Newer
Older

David Emschermann
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Copyright (C) 2012-2024 GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt
SPDX-License-Identifier: GPL-3.0-only
Authors: David Emschermann [committer] */
/******************************************************************************
** Creation of STS geometry in ROOT format (TGeo).
**
** @file create_stsgeo_v24b.C
** @author David Emschermann <d.emschermann@gsi.de>
** @author Volker Friese <v.friese@gsi.de>
** @since 15 June 2012
** @date 09.05.2014
** @author Tomas Balog <T.Balog@gsi.de>
**
** 2024-04-29 - MS - v24c: based on v24b, shift STS in Z to position measured in the cave
** as it was seen that the station 0 module position was not correct
** and the measurement was done again in the CAVE. The position of
** the Back-side of the STS box was expected to be at 57.8 cm.
** We opened the side wall of the sts-box and did the measurement
** inside the box for the placement of the C-Frames.
** The thickness of the back-side wall is 0.5 cm which means from
** inside the box (57.8-0.5=57.3) the last C-Frame edge is at 7 cm
** away (50.3). The edge of the front wall from out-side is at 22.8 cm
** (35 cm away from the backside wall). And the first module box wall
** from the wall is 1.6 cm away.
** 2024-03-27 - DE - v24b: based on v24a, shift STS in z to position measured in the cave
** 2024-03-26 - DE - v24a: add preliminary version of mSTS v24a for the 2024_03_22 gold setup
** 2024-02-06 - DE - v24a: position the STS sensors as measured in the cave
** 2023-06-29 - DE - v23b: add a 6x6 cm2 module at z=16.5 cm, keep STS box around 2x2 and 3x3 (from v22e)
** 2023-06-27 - DE - v23a: add a 6x6 cm2 module at z=14.0 cm (nominal), keep STS box around 2x2 and 3x3 (from v22e)
** 2023-02-09 - DE - v22f: decrease distance between statios 0 and 1 from 140 mm to 135 mm, to reflect CAD
** 2023-02-09 - DE - v22f: increase gap between units of a station gkLadderGapZ from 10 mm to 12 mm, to reflect CAD
** 2023-02-09 - DE - v22f: shift ladder U2 downwards in y by 2.2 mm
** 2023-02-08 - DE - v22f: introduce ladder type 12 (based on 10) for U2, but with original gkSectorOverlapY of 4.6 mm
** 2022-09-13 - DE - v22e: correct gkSectorOverlapY to 9.0 mm for the ladder type 10 (with 12 cm sensors)
** 2022-03-18 - DE - v22d: add position offset for mSTS 2022_03_22_iron as surveyed in the cave
** 2022-02-01 - DE - v22b: add position offset for mSTS 07_2021 as surveyed in the cave
** 2022-01-25 - DE - v22a: add a aluminium box around v20e
** 2020-05-16 - DE - v20e: swap ladders in unit 3 - 3x 6x6 on beam side
** 2020-03-21 - DE - v20d: build mSTS for March 2020 - 1 ladder - shift -3 cm in x
** 2020-03-11 - DE - v20c: build mSTS for March 2021 - 5 ladders
** 2020-03-11 - DE - v20b: build mSTS for May 2020 - 2 ladders
** 2020-03-11 - DE - v20a: build mSTS for March 2020 - 1 ladder
**
** 2019-12-04 - DE - v19d: build 2nd mSTS v19d station from one 6x6 and one 6x12 cm x cm sensors
** 2019-12-04 - DE - v19c: build 1st mSTS v19c station at nominal position
** 2019-08-12 - DE - v19a: mSTS as built in March 2019 - the mSTS FEBs are in the bottom
** 2019-03-15 - DE - v18n: mSTS as built in March 2019 - downstream ladder of station 0 at position of station 1
** 2018-01-18 - DE - v18g: set overlaps in X and Y according to mSTS CAD model
**
** v18f: flip orientation of carbon ladders for primary beam left of mSTS, change z-positions to 30 and 45 cm
** v18e: 2 stations, derived from v15b, 1st 2x2, 2nd of 3x3 sensor array, sensor size 6x6 cm2 with carbon ladder supports
** v18d: 2 stations of 3x3 sensor array, sensor size 6x6 cm2 with carbon ladder supports
** v18c: (causes segfault due to divide) 2 stations of 3x3 sensor array, sensor size 6x6 cm2 with carbon ladder supports
** v18b: 2 stations of 4x4 sensor array, sensor size 6x6 cm2
** v18a: 2 stations of 3x3 sensor array, sensor size 6x6 cm2
**
** v15b: introduce modified carbon ladders from v13z
** v15a: with flipped ladder orientation for stations 0,2,4,6 to match CAD design
**
** TODO:
**
** DONE:
** v15b - use carbon macaroni as ladder support
** v15b - introduce a small gap between lowest sensor and carbon ladder
** v15b - build small cones for the first 2 stations
** v15b - within a station the ladders of adjacent units should not touch eachother - set gkLadderGapZ to 10 mm
** v15b - for all ladders set an even number of ladder elements
** v15b - z offset of cones to ladders should not be 0.3 by default, but 0.26
** v15b - within a station the ladders should be aligned in z, defined either by the unit or the ladder with most sensors
** v15b - get rid of cone overlap in stations 7 and 8 - done by adapting rHole size
**
** The geometry hierarachy is:
**
** 1. Sensors (see function CreateSensors)
** The sensors are the active volumes and the lowest geometry level.
** They are built as TGeoVolumes, shape box, material silicon.
** x size is determined by strip pitch 58 mu and 1024 strips
** plus guard ring of 1.3 mm at each border -> 6.1992 cm.
** Sensor type 1 is half of that (3.0792 cm).
** y size is determined by strip length (2.2 / 4.2 / 6.3 cm) plus
** guard ring of 1.3 mm at top and bottom -> 2.46 / 4.46 / 6.46 cm.
** z size is a parameter, to be set by gkSensorThickness.
**
** 2. Sectors (see function CreateSectors)
** Sectors consist of several chained sensors. These are arranged
** vertically on top of each other with a gap to be set by
** gkChainGapY. Sectors are constructed as TGeoVolumeAssembly.
** The sectors are auxiliary volumes used for proper placement
** of the sensor(s) in the module. They do not show up in the
** final geometry.
**
** 3. Modules (see function ConstructModule)
** A module is a readout unit, consisting of one sensor or
** a chain of sensors (see sector) and a cable.
** The cable extends from the top of the sector vertically to the
** top of the halfladder the module is placed in. The cable and module
** volume thus depend on the vertical position of the sector in
** the halfladder. The cables consist of silicon with a thickness to be
** set by gkCableThickness.
** Modules are constructed as TGeoVolume, shape box, medium gStsMedium.
** The module construction can be switched off (gkConstructCables)
** to reproduce older geometries.
**
** 4. Halfladders (see function ConstructHalfLadder)
** A halfladder is a vertical assembly of several modules. The modules
** are placed vertically such that their sectors overlap by
** gkSectorOverlapY. They are displaced in z direction to allow for the
** overlap in y by gkSectorGapZ.
** The horizontal placement of modules in the halfladder can be choosen
** to left aligned or right aligned, which only matters if sensors of
** different x size are involved.
** Halfladders are constructed as TGeoVolumeAssembly.
**
** 5. Ladders (see function CreateLadders and ConstructLadder)
** A ladder is a vertical assembly of two halfladders, and is such the
** vertical building block of a station. The second (bottom) half ladder
** is rotated upside down. The vertical arrangement is such that the
** inner sectors of the two halfladders have the overlap gkSectorOverlapY
** (function CreateLadder) or that there is a vertical gap for the beam
** hole (function CreateLadderWithGap).
** Ladders are constructed as TGeoVolumeAssembly.
**
** 6. Stations (see function ConstructStation)
** A station represents one layer of the STS geometry: one measurement
** at (approximately) a given z position. It consist of several ladders
** arranged horizontally to cover the acceptance.
** The ladders are arranged such that there is a horizontal overlap
** between neighbouring ladders (gkLadderOverLapX) and a vertical gap
** to allow for this overlap (gkLadderGapZ). Each second ladder is
** rotated around its y axis to face away from or into the beam.
** Stations are constructed as TGeoVolumes, shape box minus tube (for
** the beam hole), material gStsMedium.
**
** 7. STS
** The STS is a volume hosting the entire detectors system. It consists
** of several stations located at different z positions.
** The STS is constructed as TGeoVolume, shape box minus cone (for the
** beam pipe), material gStsMedium. The size of the box is computed to
** enclose all stations.
*****************************************************************************/
// Remark: With the proper steering variables, this should exactly reproduce
// the geometry version v11b of A. Kotynia's described in the ASCII format.
// The only exception is a minimal difference in the z position of the
// sectors/sensors. This is because of ladder types 2 and 4 containing the half
// sensors around the beam hole (stations 1,2 and 3). In v11b, the two ladders
// covering the beam hole cannot be transformed into each other by rotations,
// but only by a reflection. This means they are constructionally different.
// To avoid introducing another two ladder types, the difference in z position
// was accepted.
// Differences to v12:
// gkChainGap reduced from 1 mm to 0
// gkCableThickness increased from 100 mum to 200 mum (2 cables per module)
// gkSectorOverlapY reduced from 3 mm to 2.4 mm
// New sensor types 05 and 06
// New sector types 07 and 08
// Re-definiton of ladders (17 types instead of 8)
// Re-definiton of station from new ladders
#include "TGeoCompositeShape.h"
#include "TGeoCone.h"
#include "TGeoManager.h"
#include "TGeoPara.h"
#include "TGeoTube.h"
#include <iomanip>
#include <iostream>
// ------------- Installation offset -----------------------------------
// position in x and y agrees within 2 mm to CbmRoot geometry (01.02.2022)
const Double_t gOffX = 0.0; // Offset from nominal position
const Double_t gOffY = 0.0; // Offset from nominal position
// 2023
// const Double_t gOffZ = 5.0; // Offset from nominal position
// 2024
const Double_t gOffZ = 4.55; // Offset from nominal position
const Bool_t IncludeBox = true; // false; // true, if STS box is plotted
// ------------- Steering variables -----------------------------------
// ---> Horizontal width of sensors [cm]
const Double_t gkSensorSizeX = 6.2092;
// ---> Thickness of sensors [cm]
const Double_t gkSensorThickness = 0.03;
// ---> Vertical gap between chained sensors [cm]
const Double_t gkChainGapY = 0.00;
// ---> Thickness of cables [cm]
const Double_t gkCableThickness = 0.02;
// ---> Horizontal overlap of neighbouring ladders [cm]
const Double_t gkLadderOverlapX = 0.25; // delta X - Oleg CAD 14/05/2020
// ---> Vertical overlap of neighbouring sectors in a ladder [cm]
const Double_t gkSectorOverlapY = 0.46; // delta Y - Oleg CAD 14/05/2020
const Double_t gkSectorOverlapYL10 = 0.90; // for ladders with 124 mm sensors - Oleg CAD 13/09/2022
// ---> Gap in z between neighbouring sectors in a ladder [cm]
const Double_t gkSectorGapZ = 0.17; // gap + thickness = pitch // delta Z pitch = 0.20 - Oleg CAD 14/05/2020
// ---> Gap in z between neighbouring ladders [cm]
const Double_t gkLadderGapZ = 1.20; // DEJH -> 0.90 / 0.50
// v22e const Double_t gkLadderGapZ = 1.00; // DEJH -> 0.90 / 0.50
// ---> Gap in z between lowest sector to carbon support structure [cm]
const Double_t gkSectorGapZFrame = 0.10;
// ---> Switch to construct / not to construct readout cables
const Bool_t gkConstructCables = kTRUE;
// ---> Switch to construct / not to construct frames
const Bool_t gkConstructCones = kFALSE; // kFALSE; // switch this false for v15a
const Bool_t gkConstructFrames = kTRUE; // kFALSE; // switch this false for v15a
const Bool_t gkConstructSmallFrames = kTRUE; // kFALSE;
const Bool_t gkCylindricalFrames = kTRUE; // kFALSE;
// ---> Size of the frame
const Double_t gkFrameThickness = 0.2;
const Double_t gkThinFrameThickness = 0.05;
const Double_t gkFrameStep = 4.0; // size of frame cell along y direction
const Double_t gkCylinderDiaInner =
0.07; // properties of cylindrical carbon supports, see CBM-STS Integration Meeting (10 Jul 2015)
const Double_t gkCylinderDiaOuter =
0.15; // properties of cylindrical carbon supports, see CBM-STS Integration Meeting (10 Jul 2015)
// ----------------------------------------------------------------------------
// -------------- Parameters of beam pipe in the STS region --------------
// ---> Needed to compute stations and STS such as to avoid overlaps
const Double_t gkPipeZ1 = 22.0;
const Double_t gkPipeR1 = 1.8;
const Double_t gkPipeZ2 = 50.0;
const Double_t gkPipeR2 = 1.8;
const Double_t gkPipeZ3 = 125.0;
const Double_t gkPipeR3 = 5.5;
//DE const Double_t gkPipeZ1 = 27.0;
//DE const Double_t gkPipeR1 = 1.05;
//DE const Double_t gkPipeZ2 = 160.0;
//DE const Double_t gkPipeR2 = 3.25;
// ----------------------------------------------------------------------------
// ------------- Other global variables -----------------------------------
// ---> STS medium (for every volume except silicon)
TGeoMedium* gStsMedium = NULL; // will be set later
// ---> TGeoManager (too lazy to write out 'Manager' all the time
TGeoManager* gGeoMan = NULL; // will be set later
// ----------------------------------------------------------------------------
Int_t CreateSubplates();
Int_t CreatePlates();
Int_t CreateSensors();
Int_t CreateSectors();
Int_t CreateLadders();
void CheckVolume(TGeoVolume* volume);
void CheckVolume(TGeoVolume* volume, fstream& file);
TGeoVolume* ConstructFrameElement(const TString& name, TGeoVolume* frameBoxVol, Double_t x);
TGeoVolume* ConstructSmallCone(Double_t coneDz);
TGeoVolume* ConstructBigCone(Double_t coneDz);
TGeoVolume* ConstructHalfLadder(Int_t ladderid, const TString& name, Int_t nSectors, Int_t* sectorTypes, char align);
TGeoVolume* ConstructLadder(Int_t LadderIndex, TGeoVolume* halfLadderU, TGeoVolume* halfLadderD, Double_t shiftZ);
TGeoVolume* ConstructLadderWithGap(Int_t LadderIndex, TGeoVolume* halfLadderU, TGeoVolume* halfLadderD, Double_t gapY);
TGeoVolume* ConstructStation(Int_t iStation, Int_t nLadders, Int_t* ladderTypes, Double_t rHole);
// ============================================================================
// ====== Main function =====
// ============================================================================
void create_stsgeo_v24c(const char* geoTag = "v24c_mcbm")
{
// ------- Geometry file name (output) ----------------------------------
TString geoFileName = "sts_";
geoFileName = geoFileName + geoTag + ".geo.root?reproducible";
// --------------------------------------------------------------------------
// ------- Open info file -----------------------------------------------
TString infoFileName = geoFileName;
infoFileName.ReplaceAll("root", "info");
fstream infoFile;
infoFile.open(infoFileName.Data(), fstream::out);
infoFile << "STS geometry created with create_stsgeo_v24c.C" << endl << endl;
infoFile << "Global variables: " << endl;
infoFile << "Sensor thickness = " << gkSensorThickness << " cm" << endl;
infoFile << "Vertical gap in sensor chain = " << gkChainGapY << " cm" << endl;
infoFile << "Vertical overlap of sensors = " << gkSectorOverlapY << " cm" << endl;
infoFile << "Gap in z between neighbour sensors = " << gkSectorGapZ << " cm" << endl;
infoFile << "Horizontal overlap of sensors = " << gkLadderOverlapX << " cm" << endl;
infoFile << "Gap in z between neighbour ladders = " << gkLadderGapZ << " cm" << endl;
if (gkConstructCables) infoFile << "Cable thickness = " << gkCableThickness << " cm" << endl;
else
infoFile << "No cables" << endl;
infoFile << endl;
infoFile << "Beam pipe: R1 = " << gkPipeR1 << " cm at z = " << gkPipeZ1 << " cm" << endl;
infoFile << "Beam pipe: R2 = " << gkPipeR2 << " cm at z = " << gkPipeZ2 << " cm" << endl;
infoFile << "Beam pipe: R3 = " << gkPipeR3 << " cm at z = " << gkPipeZ3 << " cm" << endl;
// --------------------------------------------------------------------------
// Load FairRunSim to ensure the correct unit system
FairRunSim* sim = new FairRunSim();
// ------- Load media from media file -----------------------------------
FairGeoLoader* geoLoad = new FairGeoLoader("TGeo", "FairGeoLoader");
FairGeoInterface* geoFace = geoLoad->getGeoInterface();
TString geoPath = gSystem->Getenv("VMCWORKDIR");
TString medFile = geoPath + "/geometry/media.geo";
geoFace->setMediaFile(medFile);
geoFace->readMedia();
gGeoMan = gGeoManager;
// --------------------------------------------------------------------------
// ----------------- Get and create the required media -----------------
FairGeoMedia* geoMedia = geoFace->getMedia();
FairGeoBuilder* geoBuild = geoLoad->getGeoBuilder();
// ---> air
FairGeoMedium* mAir = geoMedia->getMedium("air");
if (!mAir) Fatal("Main", "FairMedium air not found");
geoBuild->createMedium(mAir);
TGeoMedium* air = gGeoMan->GetMedium("air");
if (!air) Fatal("Main", "Medium air not found");
// ---> silicon
FairGeoMedium* mSilicon = geoMedia->getMedium("silicon");
if (!mSilicon) Fatal("Main", "FairMedium silicon not found");
geoBuild->createMedium(mSilicon);
TGeoMedium* silicon = gGeoMan->GetMedium("silicon");
if (!silicon) Fatal("Main", "Medium silicon not found");
// ---> carbon
FairGeoMedium* mCarbon = geoMedia->getMedium("carbon");
if (!mCarbon) Fatal("Main", "FairMedium carbon not found");
geoBuild->createMedium(mCarbon);
TGeoMedium* carbon = gGeoMan->GetMedium("carbon");
if (!carbon) Fatal("Main", "Medium carbon not found");
// ---> aluminium
FairGeoMedium* mAluminium = geoMedia->getMedium("aluminium");
if (!mAluminium) Fatal("Main", "FairMedium aluminium not found");
geoBuild->createMedium(mAluminium);
TGeoMedium* aluminium = gGeoMan->GetMedium("aluminium");
if (!aluminium) Fatal("Main", "Medium aluminium not found");
// ---> STScable
FairGeoMedium* mSTScable = geoMedia->getMedium("STScable");
if (!mSTScable) Fatal("Main", "FairMedium STScable not found");
geoBuild->createMedium(mSTScable);
TGeoMedium* STScable = gGeoMan->GetMedium("STScable");
if (!STScable) Fatal("Main", "Medium STScable not found");
// ---
gStsMedium = air;
// --------------------------------------------------------------------------
// -------------- Create geometry and top volume -------------------------
gGeoMan = (TGeoManager*) gROOT->FindObject("FAIRGeom");
gGeoMan->SetName("STSgeom");
TGeoVolume* top = new TGeoVolumeAssembly("TOP");
gGeoMan->SetTopVolume(top);
// --------------------------------------------------------------------------
// -------------- Create media ------------------------------------------
/*
cout << endl;
cout << "===> Creating media....";
cout << CreateMedia();
cout << " media created" << endl;
TList* media = gGeoMan->GetListOfMedia();
for (Int_t iMedium = 0; iMedium < media->GetSize(); iMedium++ ) {
cout << "Medium " << iMedium << ": "
<< ((TGeoMedium*) media->At(iMedium))->GetName() << endl;
}
gStsMedium = gGeoMan->GetMedium("air");
if ( ! gStsMedium ) Fatal("Main", "medium sts_air not found");
*/
// --------------------------------------------------------------------------
// --------------- Create sensors ---------------------------------------
cout << endl << endl;
cout << "===> Creating sensors...." << endl << endl;
infoFile << endl << "Sensors: " << endl;
Int_t nSensors = CreateSensors();
for (Int_t iSensor = 1; iSensor <= nSensors; iSensor++) {
TString name = Form("Sensor%02d", iSensor);
TGeoVolume* sensor = gGeoMan->GetVolume(name);
// add color to sensors
if (iSensor == 1) sensor->SetLineColor(kYellow);
if (iSensor == 2) sensor->SetLineColor(kRed);
if (iSensor == 3) sensor->SetLineColor(kBlue);
if (iSensor == 4) sensor->SetLineColor(kAzure + 7);
if (iSensor == 5) sensor->SetLineColor(kGreen);
if (iSensor == 6) sensor->SetLineColor(kYellow);
CheckVolume(sensor);
CheckVolume(sensor, infoFile);
}
// --------------------------------------------------------------------------
// ---------------- Create sectors --------------------------------------
cout << endl << endl;
cout << "===> Creating sectors...." << endl;
infoFile << endl << "Sectors: " << endl;
Int_t nSectors = CreateSectors();
for (Int_t iSector = 1; iSector <= nSectors; iSector++) {
cout << endl;
TString name = Form("Sector%02d", iSector);
TGeoVolume* sector = gGeoMan->GetVolume(name);
CheckVolume(sector);
CheckVolume(sector, infoFile);
}
// --------------------------------------------------------------------------
// ---------------- Create ladders --------------------------------------
TString name = "";
cout << endl << endl;
cout << "===> Creating ladders...." << endl;
infoFile << endl << "Ladders:" << endl;
Int_t nLadders = CreateLadders();
for (Int_t iLadder = 1; iLadder <= nLadders; iLadder++) {
cout << endl;
name = Form("Ladder%02d", iLadder);
TGeoVolume* ladder = gGeoMan->GetVolume(name);
CheckVolume(ladder);
CheckVolume(ladder, infoFile);
CheckVolume(ladder->GetNode(0)->GetVolume(), infoFile);
}
// --------------------------------------------------------------------------
// ---------------- Create cone -----------------------------------------
Double_t coneDz = 1.64;
TGeoVolume* coneSmallVolum = ConstructSmallCone(coneDz);
if (!coneSmallVolum) Fatal("ConstructSmallCone", "Volume Cone not found");
TGeoVolume* coneBigVolum = ConstructBigCone(coneDz);
if (!coneBigVolum) Fatal("ConstructBigCone", "Volume Cone not found");
// --------------------------------------------------------------------------
// ---------------- Create stations -------------------------------------
// Float_t statPos[8] = {30., 40., 50., 60., 70., 80., 90., 100.};
//DE23 Float_t statPos[8] = {13.75, 28.25, 41.75, 50., 60., 70., 80., 90.};
// Float_t statPos[8] = {14., 28., 42., 50., 60., 70., 80., 90.};
// 2023
// Float_t statPos[8] = {11.5, 28., 42., 50., 60., 70., 80., 90.};
// 2024
//
// from cave (Jens)
// hier die Sensorpositionen in Z-Richtung für das mSTS Upgrade.
// Target to Station 0: dZ=170 165
// Station 0 to 1: dZ=125 290
// Station 1 to 2: dZ=135 425
//
// 2024
//Float_t statPos[8] = {16.5, 29.0, 42.5, 50., 60., 70., 80., 90.};
Float_t statPos[8] = {12.065, 26.50, 40.0, 50., 60., 70., 80., 90.};
//
// Float_t statPos[8] = {30., 45., 50., 60., 70., 80., 90., 100.};
cout << endl << endl;
cout << "===> Creating stations...." << endl;
infoFile << endl << "Stations: ";
nLadders = 0;
Int_t ladderTypes[20];
Double_t statZ = 0.;
Double_t rHole = 0.;
TGeoBBox* statShape = NULL;
TGeoTranslation* statTrans = NULL;
// --- Station 01: 8 ladders, type 3 2 2 1 1 2 2 3
cout << endl;
statZ = 30.;
rHole = 2.0;
nLadders = 1;
ladderTypes[0] = 13;
TGeoVolume* station01 = ConstructStation(0, nLadders, ladderTypes, rHole);
CheckVolume(station01);
CheckVolume(station01, infoFile);
infoFile << "Position z = " << statPos[0] << endl;
// --- Station 02: 12 ladders, type 4 3 3 2 2 1 1 2 2 3 3 4
cout << endl;
statZ = 40.;
rHole = 2.0;
nLadders = 3;
nLadders = 2;
ladderTypes[0] = 9;
ladderTypes[1] = 9;
// v22e ladderTypes[0] = 10;
// v22e ladderTypes[1] = 10;
// v22e ladderTypes[2] = 11; // triple ladder
TGeoVolume* station02 = ConstructStation(1, nLadders, ladderTypes, rHole);
CheckVolume(station02);
CheckVolume(station02, infoFile);
infoFile << "Position z = " << statPos[1] << endl;
// --- Station 03: 12 ladders, type 8 7 6 6 6 5 5 6 6 6 7 8
cout << endl;
statZ = 50.;
rHole = 2.9;
nLadders = 3;
ladderTypes[0] = 10;
ladderTypes[1] = 12;
ladderTypes[2] = 11; // triple ladder
TGeoVolume* station03 = ConstructStation(2, nLadders, ladderTypes, rHole);
CheckVolume(station03);
CheckVolume(station03, infoFile);
infoFile << "Position z = " << statPos[2] << endl;
// // --- Station 04: 14 ladders, type 9 8 7 6 6 6 5 5 6 6 7 8 9
// cout << endl;
// statZ = 60.;
// rHole = 2.9;
// nLadders = 14;
// ladderTypes[0] = 15; // 42; // 9;
// ladderTypes[1] = 14; // 34; // 8;
// ladderTypes[2] = 13; // 33; // 7;
// ladderTypes[3] = 12; // 32; // 6;
// ladderTypes[4] = 12; // 32; // 6;
// ladderTypes[5] = 12; // 32; // 6;
// ladderTypes[6] = 4; // 41; // 5;
// ladderTypes[7] = 4; // 41; // 5;
// ladderTypes[8] = 12; // 32; // 6;
// ladderTypes[9] = 12; // 32; // 6;
// ladderTypes[10] = 12; // 32; // 6;
// ladderTypes[11] = 13; // 33; // 7;
// ladderTypes[12] = 14; // 34; // 8;
// ladderTypes[13] = 15; // 42; // 9;
// TGeoVolume* station04 = ConstructStation(3, nLadders, ladderTypes, rHole);
//
// if (gkConstructCones) {
// // upstream
// TGeoRotation* coneRot41 = new TGeoRotation;
// coneRot41->RotateZ(-90);
// coneRot41->RotateY(180);
// // TGeoCombiTrans* conePosRot41 = new TGeoCombiTrans(name+"conePosRot2", 0., 0., -coneDz-0.3-gkLadderGapZ/2., coneRot41);
// TGeoCombiTrans* conePosRot41 = new TGeoCombiTrans(name+"conePosRot2", 0., 0., -coneDz-0.285-gkLadderGapZ/2., coneRot41);
// station04->AddNode(coneBigVolum, 1, conePosRot41);
//
// // downstream
// TGeoRotation* coneRot42 = new TGeoRotation;
// coneRot42->RotateZ(-90);
// // TGeoCombiTrans* conePosRot42 = new TGeoCombiTrans(name+"conePosRot1", 0., 0., coneDz+0.3+gkLadderGapZ/2., coneRot42);
// TGeoCombiTrans* conePosRot42 = new TGeoCombiTrans(name+"conePosRot1", 0., 0., coneDz+0.285+gkLadderGapZ/2., coneRot42);
// station04->AddNode(coneBigVolum, 2, conePosRot42);
//
// station04->GetShape()->ComputeBBox();
// }
//
// CheckVolume(station04);
// CheckVolume(station04, infoFile);
// infoFile << "Position z = " << statPos[3] << endl;
//
//
// // --- Station 05: 14 ladders, type 14 13 12 12 11 11 10 10 11 11 12 12 13 14
// cout << endl;
// statZ = 70.;
// rHole = 3.7;
// nLadders = 14;
// ladderTypes[0] = 19; // 55; // 14;
// ladderTypes[1] = 18; // 54; // 13;
// ladderTypes[2] = 17; // 53; // 12;
// ladderTypes[3] = 17; // 53; // 12;
// ladderTypes[4] = 16; // 52; // 11;
// ladderTypes[5] = 16; // 52; // 11;
// ladderTypes[6] = 5; // 51; // 23; // 10;
// ladderTypes[7] = 5; // 51; // 23; // 10;
// ladderTypes[8] = 16; // 52; // 11;
// ladderTypes[9] = 16; // 52; // 11;
// ladderTypes[10] = 17; // 53; // 12;
// ladderTypes[11] = 17; // 53; // 12;
// ladderTypes[12] = 18; // 54; // 13;
// ladderTypes[13] = 19; // 55; // 14;
// TGeoVolume* station05 = ConstructStation(4, nLadders, ladderTypes, rHole);
//
// if (gkConstructCones) {
// // upstream
// TGeoRotation* coneRot51 = new TGeoRotation;
// coneRot51->RotateZ(90);
// coneRot51->RotateY(180);
// // TGeoCombiTrans* conePosRot51 = new TGeoCombiTrans(name+"conePosRot2", 0., 0., -coneDz-0.3-gkLadderGapZ/2., coneRot51);
// TGeoCombiTrans* conePosRot51 = new TGeoCombiTrans(name+"conePosRot2", 0., 0., -coneDz-0.285-gkLadderGapZ/2., coneRot51);
// station05->AddNode(coneBigVolum, 1, conePosRot51);
//
// // downstream
// TGeoRotation* coneRot52 = new TGeoRotation;
// coneRot52->RotateZ(90);
// // TGeoCombiTrans* conePosRot52 = new TGeoCombiTrans(name+"conePosRot1", 0., 0., coneDz+0.3+gkLadderGapZ/2., coneRot52);
// TGeoCombiTrans* conePosRot52 = new TGeoCombiTrans(name+"conePosRot1", 0., 0., coneDz+0.285+gkLadderGapZ/2., coneRot52);
// station05->AddNode(coneBigVolum, 2, conePosRot52);
//
// station05->GetShape()->ComputeBBox();
// }
//
// CheckVolume(station05);
// CheckVolume(station05, infoFile);
// infoFile << "Position z = " << statPos[4] << endl;
//
//
// // --- Station 06: 14 ladders, type 14 13 12 12 11 11 10 10 11 11 12 12 13 14
// cout << endl;
// statZ = 80.;
// rHole = 3.7;
// nLadders = 14;
// ladderTypes[0] = 19; // 55; // 14;
// ladderTypes[1] = 18; // 54; // 13;
// ladderTypes[2] = 17; // 53; // 12;
// ladderTypes[3] = 17; // 53; // 12;
// ladderTypes[4] = 16; // 52; // 11;
// ladderTypes[5] = 16; // 52; // 11;
// ladderTypes[6] = 6; // 61; // 10;
// ladderTypes[7] = 6; // 61; // 10;
// ladderTypes[8] = 16; // 52; // 11;
// ladderTypes[9] = 16; // 52; // 11;
// ladderTypes[10] = 17; // 53; // 12;
// ladderTypes[11] = 17; // 53; // 12;
// ladderTypes[12] = 18; // 54; // 13;
// ladderTypes[13] = 19; // 55; // 14;
// TGeoVolume* station06 = ConstructStation(5, nLadders, ladderTypes, rHole);
//
// if (gkConstructCones) {
// // upstream
// TGeoRotation* coneRot61 = new TGeoRotation;
// coneRot61->RotateZ(-90);
// coneRot61->RotateY(180);
// // TGeoCombiTrans* conePosRot61 = new TGeoCombiTrans(name+"conePosRot2", 0., 0., -coneDz-0.3-gkLadderGapZ/2., coneRot61);
// TGeoCombiTrans* conePosRot61 = new TGeoCombiTrans(name+"conePosRot2", 0., 0., -coneDz-0.285-gkLadderGapZ/2., coneRot61);
// station06->AddNode(coneBigVolum, 1, conePosRot61);
//
// // downstream
// TGeoRotation* coneRot62 = new TGeoRotation;
// coneRot62->RotateZ(-90);
// // TGeoCombiTrans* conePosRot62 = new TGeoCombiTrans(name+"conePosRot1", 0., 0., coneDz+0.3+gkLadderGapZ/2., coneRot62);
// TGeoCombiTrans* conePosRot62 = new TGeoCombiTrans(name+"conePosRot1", 0., 0., coneDz+0.285+gkLadderGapZ/2., coneRot62);
// station06->AddNode(coneBigVolum, 2, conePosRot62);
//
// station06->GetShape()->ComputeBBox();
// }
//
// CheckVolume(station06);
// CheckVolume(station06, infoFile);
// infoFile << "Position z = " << statPos[5] << endl;
//
//
// // --- Station 07: 16 ladders, type 14 13 17 17 16 16 16 15 15 16 16 16 17 17 13 14
// cout << endl;
// statZ = 90.;
// rHole = 4.2;
// nLadders = 16;
// ladderTypes[0] = 21; // 73; // 17;
// ladderTypes[1] = 19; // 55; // 14;
// ladderTypes[2] = 18; // 54; // 13;
// ladderTypes[3] = 20; // 72; // 16;
// ladderTypes[4] = 20; // 72; // 16;
// ladderTypes[5] = 20; // 72; // 16;
// ladderTypes[6] = 20; // 72; // 16;
// ladderTypes[7] = 7; // 71; // 15;
// ladderTypes[8] = 7; // 71; // 15;
// ladderTypes[9] = 20; // 72; // 16;
// ladderTypes[10] = 20; // 72; // 16;
// ladderTypes[11] = 20; // 72; // 16;
// ladderTypes[12] = 20; // 72; // 16;
// ladderTypes[13] = 18; // 54; // 13;
// ladderTypes[14] = 19; // 55; // 14;
// ladderTypes[15] = 21; // 73; // 17;
// TGeoVolume* station07 = ConstructStation(6, nLadders, ladderTypes, rHole);
//
// if (gkConstructCones) {
// // upstream
// TGeoRotation* coneRot71 = new TGeoRotation;
// coneRot71->RotateZ(90);
// coneRot71->RotateY(180);
// // TGeoCombiTrans* conePosRot71 = new TGeoCombiTrans(name+"conePosRot2", 0., 0., -coneDz-0.3-gkLadderGapZ/2., coneRot71);
// TGeoCombiTrans* conePosRot71 = new TGeoCombiTrans(name+"conePosRot2", 0., 0., -coneDz-0.285-gkLadderGapZ/2., coneRot71);
// station07->AddNode(coneBigVolum, 1, conePosRot71);
//
// // downstream
// TGeoRotation* coneRot72 = new TGeoRotation;
// coneRot72->RotateZ(90);
// // TGeoCombiTrans* conePosRot72 = new TGeoCombiTrans(name+"conePosRot1", 0., 0., coneDz+0.3+gkLadderGapZ/2., coneRot72);
// TGeoCombiTrans* conePosRot72 = new TGeoCombiTrans(name+"conePosRot1", 0., 0., coneDz+0.285+gkLadderGapZ/2., coneRot72);
// station07->AddNode(coneBigVolum, 2, conePosRot72);
//
// station07->GetShape()->ComputeBBox();
// }
//
// CheckVolume(station07);
// CheckVolume(station07, infoFile);
// infoFile << "Position z = " << statPos[6] << endl;
//
//
// // --- Station 08: 16 ladders, type 14 13 17 17 16 16 16 15 15 16 16 16 17 17 13 14
// cout << endl;
// statZ = 100.;
// rHole = 4.2;
// nLadders = 16;
// ladderTypes[0] = 19; // 55; // 14;
// ladderTypes[1] = 17; // 53; // 12;
// ladderTypes[2] = 23; // 83; // 20;
// ladderTypes[3] = 22; // 82; // 19;
// ladderTypes[4] = 22; // 82; // 19;
// ladderTypes[5] = 22; // 82; // 19;
// ladderTypes[6] = 22; // 82; // 19;
// ladderTypes[7] = 8; // 81; // 18;
// ladderTypes[8] = 8; // 81; // 18;
// ladderTypes[9] = 22; // 82; // 19;
// ladderTypes[10] = 22; // 82; // 19;
// ladderTypes[11] = 22; // 82; // 19;
// ladderTypes[12] = 22; // 82; // 19;
// ladderTypes[13] = 23; // 83; // 20;
// ladderTypes[14] = 17; // 53; // 12;
// ladderTypes[15] = 19; // 55; // 14;
// TGeoVolume* station08 = ConstructStation(7, nLadders, ladderTypes, rHole);
//
// if (gkConstructCones) {
// // upstream
// TGeoRotation* coneRot81 = new TGeoRotation;
// coneRot81->RotateZ(-90);
// coneRot81->RotateY(180);
// // TGeoCombiTrans* conePosRot81 = new TGeoCombiTrans(name+"conePosRot2", 0., 0., -coneDz-0.3-gkLadderGapZ/2., coneRot81);
// TGeoCombiTrans* conePosRot81 = new TGeoCombiTrans(name+"conePosRot2", 0., 0., -coneDz-0.285-gkLadderGapZ/2., coneRot81);
// station08->AddNode(coneBigVolum, 1, conePosRot81);
//
// // downstream
// TGeoRotation* coneRot82 = new TGeoRotation;
// coneRot82->RotateZ(-90);
// // TGeoCombiTrans* conePosRot82 = new TGeoCombiTrans(name+"conePosRot1", 0., 0., coneDz+0.3+gkLadderGapZ/2., coneRot82);
// TGeoCombiTrans* conePosRot82 = new TGeoCombiTrans(name+"conePosRot1", 0., 0., coneDz+0.285+gkLadderGapZ/2., coneRot82);
// station08->AddNode(coneBigVolum, 2, conePosRot82);
//
// station08->GetShape()->ComputeBBox();
// }
//
// CheckVolume(station08);
// CheckVolume(station08, infoFile);
// infoFile << "Position z = " << statPos[7] << endl;
// --------------------------------------------------------------------------
// --------------- Create subplates ---------------------------------------
cout << endl << endl;
cout << "===> Creating subplates...." << endl << endl;
infoFile << endl << "Subplates: " << endl;
Int_t nSubplates = CreateSubplates();
for (Int_t iSubplate = 1; iSubplate <= nSubplates; iSubplate++) {
TString name = Form("Subplate%02d", iSubplate);
TGeoVolume* subplate = gGeoMan->GetVolume(name);
// add color to plates
subplate->SetTransparency(60);
if (iSubplate == 1) subplate->SetLineColor(kOrange); // kOrange);
if (iSubplate == 2) subplate->SetLineColor(kOrange); // kRed);
if (iSubplate == 3) subplate->SetLineColor(kOrange); // kGreen);
if (iSubplate == 4) subplate->SetLineColor(kOrange); // kRed);
if (iSubplate == 5) subplate->SetLineColor(kOrange); // kOrange);
if (iSubplate == 6) subplate->SetLineColor(kOrange); // kCyan);
if (iSubplate == 7) subplate->SetLineColor(kOrange); // kRed);
if (iSubplate == 8) subplate->SetLineColor(kOrange); // kGreen);
if (iSubplate == 9) subplate->SetLineColor(kOrange); // kGreen);
if (iSubplate == 10) subplate->SetLineColor(kOrange); // kGreen);
// CheckVolume(plate);
// CheckVolume(plate, infoFile);
}
// --------------------------------------------------------------------------
// --------------- Create plates ---------------------------------------
cout << endl << endl;
cout << "===> Creating plates...." << endl << endl;
infoFile << endl << "Plates: " << endl;
Int_t nPlates = CreatePlates();
for (Int_t iPlate = 1; iPlate <= nPlates; iPlate++) {
TString name = Form("Plate%02d", iPlate);
TGeoVolume* plate = gGeoMan->GetVolume(name);
// CheckVolume(plate);
// CheckVolume(plate, infoFile);
}
// --------------------------------------------------------------------------
// --------------- Create STS volume ------------------------------------
cout << endl << endl;
cout << "===> Creating STS...." << endl;
TString stsName = "sts_";
stsName += geoTag;
// --- Determine size of STS box
Double_t stsX = 0.;
Double_t stsY = 0.;
Double_t stsZ = 0.;
Double_t stsBorder = 2 * 5.; // 5 cm space for carbon ladders on each side
Int_t nStation = 3; // set number of stations
for (Int_t iStation = 1; iStation <= nStation; iStation++) {
TString statName = Form("Station%02d", iStation);
TGeoVolume* station = gGeoMan->GetVolume(statName);
TGeoBBox* shape = (TGeoBBox*) station->GetShape();
stsX = TMath::Max(stsX, 2. * shape->GetDX());
stsY = TMath::Max(stsY, 2. * shape->GetDY());
cout << "Station " << iStation << ": Y " << stsY << endl;
}
// --- Some border around the stations
stsX += stsBorder;
stsY += stsBorder;
stsZ = (statPos[2] - statPos[1]) + stsBorder;
Double_t stsPosZ = 0.5 * (statPos[2] + statPos[1]);
// stsZ = (statPos[1] - statPos[0]) + stsBorder;
// Double_t stsPosZ = 0.5 * (statPos[1] + statPos[0]);
// --- Create box around the stations
TGeoBBox* stsBox = new TGeoBBox("stsBox", stsX / 2., stsY / 2., stsZ / 2.);
cout << "size of STS box: x " << stsX << " - y " << stsY << " - z " << stsZ << endl;
// // --- Create cone hosting the beam pipe
// // --- One straight section with constant radius followed by a cone
// Double_t z1 = statPos[0] - 0.5 * stsBorder; // start of STS box
// Double_t z2 = gkPipeZ2;
// Double_t z3 = statPos[1] + 0.5 * stsBorder; // end of STS box
// Double_t r1 = BeamPipeRadius(z1);
// Double_t r2 = BeamPipeRadius(z2);
// Double_t r3 = BeamPipeRadius(z3);
// r1 += 0.01; // safety margin
// r2 += 0.01; // safety margin
// r3 += 0.01; // safety margin
//
// cout << endl;
// cout << z1 << " " << r1 << endl;
// cout << z2 << " " << r2 << endl;
// cout << z3 << " " << r3 << endl;
//
// cout << endl;
// cout << "station1 : " << BeamPipeRadius(statPos[0]) << endl;
// cout << "station2 : " << BeamPipeRadius(statPos[1]) << endl;
// cout << "station3 : " << BeamPipeRadius(statPos[2]) << endl;
// cout << "station4 : " << BeamPipeRadius(statPos[3]) << endl;
// cout << "station5 : " << BeamPipeRadius(statPos[4]) << endl;
// cout << "station6 : " << BeamPipeRadius(statPos[5]) << endl;
// cout << "station7 : " << BeamPipeRadius(statPos[6]) << endl;
// cout << "station8 : " << BeamPipeRadius(statPos[7]) << endl;
//
// // TGeoPcon* cutout = new TGeoPcon("stsCone", 0., 360., 3); // 2.*TMath::Pi(), 3);
// // cutout->DefineSection(0, z1, 0., r1);
// // cutout->DefineSection(1, z2, 0., r2);
// // cutout->DefineSection(2, z3, 0., r3);
// new TGeoTrd2("stsCone1", r1, r2, r1, r2, (z2-z1)/2.+.1); // add .1 in z length for a clean cutout
// TGeoTranslation *trans1 = new TGeoTranslation("trans1", 0., 0., -(z3-z1)/2.+(z2-z1)/2.);
// trans1->RegisterYourself();
// new TGeoTrd2("stsCone2", r2, r3, r2, r3, (z3-z2)/2.+.1); // add .1 in z length for a clean cutout
// TGeoTranslation *trans2 = new TGeoTranslation("trans2", 0., 0., +(z3-z1)/2.-(z3-z2)/2.);
// trans2->RegisterYourself();
//DE Double_t z1 = statPos[0] - 0.5 * stsBorder; // start of STS box
//DE Double_t z2 = statPos[7] + 0.5 * stsBorder; // end of STS box
//DE Double_t slope = (gkPipeR2 - gkPipeR1) / (gkPipeZ2 - gkPipeZ1);
//DE Double_t r1 = gkPipeR1 + slope * (z1 - gkPipeZ1); // at start of STS
//DE Double_t r2 = gkPipeR1 + slope * (z2 - gkPipeZ1); // at end of STS
//DE r1 += 0.1; // safety margin
//DE r2 += 0.1; // safety margin
//DE // new TGeoCone("stsCone", stsZ/2., 0., r1, 0., r2);
//DE new TGeoTrd2("stsCone", r1, r2, r1, r2, stsZ/2.);
// --- Create STS volume
// TGeoShape* stsShape = new TGeoCompositeShape("stsShape",
// "stsBox-stsCone1:trans1-stsCone2:trans2");
// TGeoVolume* sts = new TGeoVolume(stsName.Data(), stsShape, gStsMedium);
// TGeoVolume* sts = new TGeoVolume(stsName.Data(), stsBox, gStsMedium);
TGeoVolumeAssembly* sts = new TGeoVolumeAssembly(stsName.Data()); // do not produce keeping volumes
// --- Place stations in the STS
for (Int_t iStation = 1; iStation <= nStation; iStation++) {
TString statName = Form("Station%02d", iStation);
TGeoVolume* station = gGeoMan->GetVolume(statName);
Double_t posZ = statPos[iStation - 1] - stsPosZ;
TGeoTranslation* trans = new TGeoTranslation(0., 0., posZ); // standard
sts->AddNode(station, iStation, trans);
sts->GetShape()->ComputeBBox();
}
// plates
if (IncludeBox)
for (Int_t iPlate = 1; iPlate <= nPlates; iPlate++) {
TString platName = Form("Plate%02d", iPlate);
TGeoVolume* plate = gGeoMan->GetVolume(platName);
TGeoTranslation* boxdz01 = new TGeoTranslation("ty01", 0, 0, 2.50); // v23a - shift to 2x2 and 3x3 stations
sts->AddNode(plate, iPlate, boxdz01);
// sts->AddNode(plate, iPlate);
sts->GetShape()->ComputeBBox();
}
cout << endl;
CheckVolume(sts);
// --------------------------------------------------------------------------
// --------------- Finish -----------------------------------------------
TGeoTranslation* stsTrans = new TGeoTranslation(gOffX, gOffY, stsPosZ + gOffZ);
top->AddNode(sts, 1, stsTrans);
top->GetShape()->ComputeBBox();
cout << endl << endl;
CheckVolume(top);
cout << endl << endl;
gGeoMan->CloseGeometry();
gGeoMan->CheckOverlaps(0.0001);
gGeoMan->PrintOverlaps();
gGeoMan->Test();
TFile* geoFile = new TFile(geoFileName, "RECREATE");
sts->Export(geoFileName);
cout << endl;
cout << "Geometry " << sts->GetName() << " exported to " << geoFileName << endl;
geoFile->Close();
geoFile = new TFile(geoFileName, "UPDATE");
stsTrans->Write();
geoFile->Close();
TString geoFileName_ = "sts_";
geoFileName_ = geoFileName_ + geoTag + "_geo.root?reproducible";
geoFile = new TFile(geoFileName_, "RECREATE");
gGeoMan->Write(); // use this is you want GeoManager format in the output
geoFile->Close();
top->Draw("ogl");
gGeoManager->SetVisLevel(6);
infoFile.close();
// create medialist for this geometry
TString createmedialist = gSystem->Getenv("VMCWORKDIR");
createmedialist += "/macro/geometry/create_medialist.C";
std::cout << "Loading macro " << createmedialist << std::endl;
gROOT->LoadMacro(createmedialist);
gROOT->ProcessLine("create_medialist(\"\", false)");
}
// ============================================================================
// ====== End of main function =====
// ============================================================================
// ****************************************************************************
// ***** Definition of media, sensors, sectors and ladders *****
// ***** *****
// ***** Decoupled from main function for better readability *****
// ****************************************************************************
/** ===========================================================================
** Create media
**
** Currently created: air, active silicon, passive silion
**
** Not used for the time being
**/
Int_t CreateMedia()
{
Int_t nMedia = 0;
Double_t density = 0.;
// --- Material air
density = 1.205e-3; // [g/cm^3]
TGeoMixture* matAir = new TGeoMixture("sts_air", 3, density);
matAir->AddElement(14.0067, 7, 0.755); // Nitrogen
matAir->AddElement(15.999, 8, 0.231); // Oxygen
matAir->AddElement(39.948, 18, 0.014); // Argon
// --- Material silicon
density = 2.33; // [g/cm^3]