TutorialFindPeaks.C 3.08 KiB
// Illustrates how to find peaks in histograms.
// This script generates a random number of gaussian peaks
// on top of a linear background.
// The position of the peaks is found via TSpectrum and injected
// as initial values of parameters to make a global fit.
// The background is computed and drawn on top of the original histogram.
//
// To execute this example, do
// root > .x peaks.C (generate 10 peaks by default)
// root > .x peaks.C++ (use the compiler)
// root > .x peaks.C++(30) (generates 30 peaks)
//
// To execute only the first part of the script (without fitting)
// specify a negative value for the number of peaks, eg
// root > .x peaks.C(-20)
//
//Author: Rene Brun
#include "TCanvas.h"
#include "TF1.h"
#include "TH1.h"
#include "TMath.h"
#include "TRandom.h"
#include "TSpectrum.h"
#include "TVirtualFitter.h"
Int_t npeaks = 30;
Double_t fpeaks(Double_t* x, Double_t* par) {
Double_t result = par[0] + par[1] * x[0];
for (Int_t p = 0; p < npeaks; p++) {
Double_t norm = par[3 * p + 2];
Double_t mean = par[3 * p + 3];
Double_t sigma = par[3 * p + 4];
result += norm * TMath::Gaus(x[0], mean, sigma);
}
return result;
}
void TutorialFindPeaks(Int_t np = 10) {
npeaks = TMath::Abs(np);
TH1F* h = new TH1F("h", "test", 500, 0, 1000);
//generate n peaks at random
Double_t par[3000];
par[0] = 0.8;
par[1] = -0.6 / 1000;
Int_t p;
for (p = 0; p < npeaks; p++) {
par[3 * p + 2] = 1;
par[3 * p + 3] = 10 + gRandom->Rndm() * 980;
par[3 * p + 4] = 3 + 2 * gRandom->Rndm();
}
TF1* f = new TF1("f", fpeaks, 0, 1000, 2 + 3 * npeaks);
f->SetNpx(1000);
f->SetParameters(par);
TCanvas* c1 = new TCanvas("c1", "c1", 10, 10, 1000, 900);
c1->Divide(1, 2);
c1->cd(1);
h->FillRandom("f", 200000);
h->Draw();
TH1F* h2 = (TH1F*) h->Clone("h2");
//Use TSpectrum to find the peak candidates
TSpectrum* s = new TSpectrum(2 * npeaks);
Int_t nfound = s->Search(h, 2, "", 0.10);
printf("Found %d candidate peaks to fit\n", nfound);
//Estimate background using TSpectrum::Background
TH1* hb = s->Background(h, 20, "same");
if (hb) c1->Update();
if (np < 0) return;
//estimate linear background using a fitting method
c1->cd(2);
TF1* fline = new TF1("fline", "pol1", 0, 1000);
h->Fit("fline", "qn");
//Loop on all found peaks. Eliminate peaks at the background level
par[0] = fline->GetParameter(0);
par[1] = fline->GetParameter(1);
npeaks = 0;
Double_t* xpeaks = s->GetPositionX();
for (p = 0; p < nfound; p++) {
Double_t xp = xpeaks[p];
Int_t bin = h->GetXaxis()->FindBin(xp);
Double_t yp = h->GetBinContent(bin);
if (yp - TMath::Sqrt(yp) < fline->Eval(xp)) continue;
par[3 * npeaks + 2] = yp;
par[3 * npeaks + 3] = xp;
par[3 * npeaks + 4] = 3;
npeaks++;
}
printf("Found %d useful peaks to fit\n", npeaks);
printf("Now fitting: Be patient\n");
TF1* fit = new TF1("fit", fpeaks, 0, 1000, 2 + 3 * npeaks);
//we may have more than the default 25 parameters
TVirtualFitter::Fitter(h2, 10 + 3 * npeaks);
fit->SetParameters(par);
fit->SetNpx(1000);
h2->Fit("fit");
}