-
Administrator authored
Apply code formatting to all source/header files and root macros.
Administrator authoredApply code formatting to all source/header files and root macros.
CbmKFFieldMath.cxx 35.15 KiB
#include "CbmKFFieldMath.h"
#include "CbmKFMath.h"
#include "FairField.h"
#include "math.h"
//using std::sqrt;
//using std::finite;
ClassImp(CbmKFFieldMath)
void CbmKFFieldMath::ExtrapolateLine(const Double_t T_in[],
const Double_t C_in[],
Double_t T_out[],
Double_t C_out[],
Double_t z_out) {
if (!T_in) return;
Double_t dz = z_out - T_in[5];
if (T_out) {
T_out[0] = T_in[0] + dz * T_in[2];
T_out[1] = T_in[1] + dz * T_in[3];
T_out[2] = T_in[2];
T_out[3] = T_in[3];
T_out[4] = T_in[4];
T_out[5] = z_out;
}
if (C_in && C_out) {
const Double_t dzC_in8 = dz * C_in[8];
C_out[4] = C_in[4] + dzC_in8;
C_out[1] = C_in[1] + dz * (C_out[4] + C_in[6]);
const Double_t C_in3 = C_in[3];
C_out[3] = C_in3 + dz * C_in[5];
C_out[0] = C_in[0] + dz * (C_out[3] + C_in3);
const Double_t C_in7 = C_in[7];
C_out[7] = C_in7 + dz * C_in[9];
C_out[2] = C_in[2] + dz * (C_out[7] + C_in7);
C_out[5] = C_in[5];
C_out[6] = C_in[6] + dzC_in8;
C_out[8] = C_in[8];
C_out[9] = C_in[9];
C_out[10] = C_in[10];
C_out[11] = C_in[11];
C_out[12] = C_in[12];
C_out[13] = C_in[13];
C_out[14] = C_in[14];
}
}
Int_t CbmKFFieldMath::ExtrapolateRK4(
const Double_t T_in[], // input track parameters (x,y,tx,ty,Q/p)
const Double_t C_in[], // input covariance matrix
Double_t T_out[], // output track parameters
Double_t C_out[], // output covariance matrix
Double_t z_out, // extrapolate to this z position
Double_t qp0, // use Q/p linearisation at this value
FairField* MF // magnetic field
) {
//
// Forth-order Runge-Kutta method for solution of the equation
// of motion of a particle with parameter qp = Q /P
// in the magnetic field B()
//
// | x | tx
// | y | ty
// d/dz = | tx| = ft * ( ty * ( B(3)+tx*b(1) ) - (1+tx**2)*B(2) )
// | ty| ft * (-tx * ( B(3)+ty+b(2) - (1+ty**2)*B(1) ) ,
//
// where ft = c_light*qp*sqrt ( 1 + tx**2 + ty**2 ) .
//
// In the following for RK step :
//
// x=x[0], y=x[1], tx=x[3], ty=x[4].
//
//========================================================================
//
// NIM A395 (1997) 169-184; NIM A426 (1999) 268-282.
//
// the routine is based on LHC(b) utility code
//
//========================================================================
const Double_t c_light = 0.000299792458;
static Double_t a[4] = {0.0, 0.5, 0.5, 1.0};
static Double_t c[4] = {1.0 / 6.0, 1.0 / 3.0, 1.0 / 3.0, 1.0 / 6.0};
static Double_t b[4] = {0.0, 0.5, 0.5, 1.0};
Int_t step4;
Double_t k[16], x0[4], x[4], k1[16];
Double_t Ax[4], Ay[4], Ax_tx[4], Ay_tx[4], Ax_ty[4], Ay_ty[4];
//----------------------------------------------------------------
Double_t qp_in = T_in[4];
Double_t z_in = T_in[5];
Double_t h = z_out - z_in;
Double_t hC = h * c_light;
x0[0] = T_in[0];
x0[1] = T_in[1];
x0[2] = T_in[2];
x0[3] = T_in[3];
//
// Runge-Kutta step
//
Int_t step;
Int_t i;
for (step = 0; step < 4; ++step) {
for (i = 0; i < 4; ++i) {
if (step == 0) {
x[i] = x0[i];
} else {
x[i] = x0[i] + b[step] * k[step * 4 - 4 + i];
}
}
Double_t point[3] = {x[0], x[1], z_in + a[step] * h};
Double_t B[3];
if (MF)
MF->GetFieldValue(point, B);
else {
B[0] = B[1] = B[2] = 0.;
}
Double_t tx = x[2];
Double_t ty = x[3];
Double_t tx2 = tx * tx;
Double_t ty2 = ty * ty;
Double_t txty = tx * ty;
Double_t tx2ty21 = 1.0 + tx2 + ty2;
if (tx2ty21 > 1.e4) return 1;
Double_t I_tx2ty21 = 1.0 / tx2ty21 * qp0;
Double_t tx2ty2 = sqrt(tx2ty21);
// Double_t I_tx2ty2 = qp0 * hC / tx2ty2 ; unsused ???
tx2ty2 *= hC;
Double_t tx2ty2qp = tx2ty2 * qp0;
Ax[step] = (txty * B[0] + ty * B[2] - (1.0 + tx2) * B[1]) * tx2ty2;
Ay[step] = (-txty * B[1] - tx * B[2] + (1.0 + ty2) * B[0]) * tx2ty2;
Ax_tx[step] =
Ax[step] * tx * I_tx2ty21 + (ty * B[0] - 2.0 * tx * B[1]) * tx2ty2qp;
Ax_ty[step] = Ax[step] * ty * I_tx2ty21 + (tx * B[0] + B[2]) * tx2ty2qp;
Ay_tx[step] = Ay[step] * tx * I_tx2ty21 + (-ty * B[1] - B[2]) * tx2ty2qp;
Ay_ty[step] =
Ay[step] * ty * I_tx2ty21 + (-tx * B[1] + 2.0 * ty * B[0]) * tx2ty2qp;
step4 = step * 4;
k[step4] = tx * h;
k[step4 + 1] = ty * h;
k[step4 + 2] = Ax[step] * qp0;
k[step4 + 3] = Ay[step] * qp0;
} // end of Runge-Kutta steps
for (i = 0; i < 4; ++i) {
T_out[i] = x0[i] + c[0] * k[i] + c[1] * k[4 + i] + c[2] * k[8 + i]
+ c[3] * k[12 + i];
}
T_out[4] = T_in[4];
T_out[5] = z_out;
//
// Derivatives dx/dqp
//
x0[0] = 0.0;
x0[1] = 0.0;
x0[2] = 0.0;
x0[3] = 0.0;
//
// Runge-Kutta step for derivatives dx/dqp
for (step = 0; step < 4; ++step) {
for (i = 0; i < 4; ++i) {
if (step == 0) {
x[i] = x0[i];
} else {
x[i] = x0[i] + b[step] * k1[step * 4 - 4 + i];
}
}
step4 = step * 4;
k1[step4] = x[2] * h;
k1[step4 + 1] = x[3] * h;
k1[step4 + 2] = Ax[step] + Ax_tx[step] * x[2] + Ax_ty[step] * x[3];
k1[step4 + 3] = Ay[step] + Ay_tx[step] * x[2] + Ay_ty[step] * x[3];
} // end of Runge-Kutta steps for derivatives dx/dqp
Double_t J[25];
for (i = 0; i < 4; ++i) {
J[20 + i] = x0[i] + c[0] * k1[i] + c[1] * k1[4 + i] + c[2] * k1[8 + i]
+ c[3] * k1[12 + i];
}
J[24] = 1.;
//
// end of derivatives dx/dqp
//
// Derivatives dx/tx
//
x0[0] = 0.0;
x0[1] = 0.0;
x0[2] = 1.0;
x0[3] = 0.0;
//
// Runge-Kutta step for derivatives dx/dtx
//
for (step = 0; step < 4; ++step) {
for (i = 0; i < 4; ++i) {
if (step == 0) {
x[i] = x0[i];
} else if (i != 2) {
x[i] = x0[i] + b[step] * k1[step * 4 - 4 + i];
}
}
step4 = step * 4;
k1[step4] = x[2] * h;
k1[step4 + 1] = x[3] * h;
// k1[step4+2] = Ax_tx[step] * x[2] + Ax_ty[step] * x[3];
k1[step4 + 3] = Ay_tx[step] * x[2] + Ay_ty[step] * x[3];
} // end of Runge-Kutta steps for derivatives dx/dtx
for (i = 0; i < 4; ++i) {
if (i != 2) {
J[10 + i] = x0[i] + c[0] * k1[i] + c[1] * k1[4 + i] + c[2] * k1[8 + i]
+ c[3] * k1[12 + i];
}
}
// end of derivatives dx/dtx
J[12] = 1.0;
J[14] = 0.0;
// Derivatives dx/ty
//
x0[0] = 0.0;
x0[1] = 0.0;
x0[2] = 0.0;
x0[3] = 1.0;
//
// Runge-Kutta step for derivatives dx/dty
//
for (step = 0; step < 4; ++step) {
for (i = 0; i < 4; ++i) {
if (step == 0) {
x[i] = x0[i]; // ty fixed
} else if (i != 3) {
x[i] = x0[i] + b[step] * k1[step * 4 - 4 + i];
}
}
step4 = step * 4;
k1[step4] = x[2] * h;
k1[step4 + 1] = x[3] * h;
k1[step4 + 2] = Ax_tx[step] * x[2] + Ax_ty[step] * x[3];
// k1[step4+3] = Ay_tx[step] * x[2] + Ay_ty[step] * x[3];
} // end of Runge-Kutta steps for derivatives dx/dty
for (i = 0; i < 3; ++i) {
J[15 + i] = x0[i] + c[0] * k1[i] + c[1] * k1[4 + i] + c[2] * k1[8 + i]
+ c[3] * k1[12 + i];
}
// end of derivatives dx/dty
J[18] = 1.;
J[19] = 0.;
//
// derivatives dx/dx and dx/dy
for (i = 0; i < 10; ++i) {
J[i] = 0.;
}
J[0] = 1.;
J[6] = 1.;
// extrapolate inverse momentum
T_out[4] = qp_in;
Double_t dqp = qp_in - qp0;
{
for (Int_t ip = 0; ip < 4; ip++) {
T_out[ip] += J[5 * 4 + ip] * dqp;
}
}
// covariance matrix transport
if (C_in && C_out) CbmKFMath::multQtSQ(5, J, C_in, C_out);
return 0;
} // end of RK4
#ifdef XXX
/****************************************************************
*
* Field Integration
*
****************************************************************/
void CbmKFFieldMath::IntegrateField(CbmMagField* MF,
Double_t r0[],
Double_t r1[],
Double_t r2[],
Double_t si[3],
Double_t Si[3],
Double_t sii[3][3],
Double_t Sii[3][3],
Double_t siii[3][3][3],
Double_t Siii[3][3][3]) {
Double_t dz = r2[2] - r0[2];
Double_t B[3][3];
if (MF) {
MF->GetFieldValue(r0, B[0]);
MF->GetFieldValue(r1, B[1]);
MF->GetFieldValue(r2, B[2]);
} else
B[0][0] = B[0][1] = B[0][2] = B[1][0] = B[1][1] = B[1][2] = B[2][0] =
B[2][1] = B[2][2] = 0;
// coefficients
Double_t c1[3] = {1, 4, 1} // /=6.
,
c2[3][3] = {{5, -4, -1}, {44, 80, -4}, {11, 44, 5}} // /=360.
,
c3[3][3][3] = {{{35, 20, -1}, {-124, -256, 20}, {-19, -52, -1}},
{{524, 176, -52}, {1760, 2240, -256}, {-52, 176, 20}},
{{125, -52, -19},
{1028, 1760, -124},
{125, 524, 35}}}; // /=45360.
Double_t C1[3] = {1, 2, 0} // /=6.
,
C2[3][3] = {{38, 8, -4}, {148, 208, -20}, {3, 36, 3}} // /=2520.
,
C3[3][3][3] = {
{{85, 28, -5}, {4, -80, 4}, {-17, -20, 1}},
{{494, 200, -46}, {1256, 1376, -184}, {-94, 8, 14}},
{{15, -12, -3}, {252, 432, -36}, {21, 84, 3}}}; // /=90720.
// integrate field
for (Int_t x = 0; x < 3; x++) {
if (si) {
si[x] = 0;
for (Int_t n = 0; n < 3; n++)
si[x] += c1[n] * B[n][x];
si[x] *= dz / 6.;
}
if (Si) {
Si[x] = 0;
for (Int_t n = 0; n < 3; n++)
Si[x] += C1[n] * B[n][x];
Si[x] *= dz * dz / 6.;
}
for (Int_t y = 0; y < 3; y++) {
if (sii) {
sii[x][y] = 0;
for (Int_t n = 0; n < 3; n++)
for (Int_t m = 0; m < 3; m++)
sii[x][y] += c2[n][m] * B[n][x] * B[m][y];
sii[x][y] *= dz * dz / 360.;
}
if (Sii) {
Sii[x][y] = 0;
for (Int_t n = 0; n < 3; n++)
for (Int_t m = 0; m < 3; m++)
Sii[x][y] += C2[n][m] * B[n][x] * B[m][y];
Sii[x][y] *= dz * dz * dz / 2520.;
}
for (Int_t z = 0; z < 3; z++) {
if (siii) {
siii[x][y][z] = 0;
for (Int_t n = 0; n < 3; n++)
for (Int_t m = 0; m < 3; m++)
for (Int_t k = 0; k < 3; k++)
siii[x][y][z] += c3[n][m][k] * B[n][x] * B[m][y] * B[k][z];
siii[x][y][z] *= dz * dz * dz / 45360.;
}
if (Siii) {
Siii[x][y][z] = 0;
for (Int_t n = 0; n < 3; n++)
for (Int_t m = 0; m < 3; m++)
for (Int_t k = 0; k < 3; k++)
Siii[x][y][z] += C3[n][m][k] * B[n][x] * B[m][y] * B[k][z];
Siii[x][y][z] *= dz * dz * dz * dz / 90720.;
}
}
}
}
}
/****************************************************************
*
* Calculate extrapolation coefficients
*
****************************************************************/
void CbmKFFieldMath::GetCoefficients(const Double_t x,
const Double_t y,
Double_t Xi[3][3],
Double_t Yi[3][3],
Double_t Xii[3][3][3],
Double_t Yii[3][3][3],
Double_t Xiii[3][3][3][3],
Double_t Yiii[3][3][3][3]) {
Double_t
xx = x * x,
xy = x * y, yy = y * y,
x2 = x * 2, x4 = x * 4, xx31 = xx * 3 + 1, xx33 = xx * 3 + 3,
xx82 = xx * 8 + 2, xx86 = xx * 8 + 6, xx153 = xx * 15 + 3,
xx159 = xx * 15 + 9,
y2 = y * 2, y4 = y * 4, yy31 = yy * 3 + 1, yy33 = yy * 3 + 3,
yy82 = yy * 8 + 2, yy86 = yy * 8 + 6, yy153 = yy * 15 + 3,
yy159 = yy * 15 + 9, xxyy2 = 2 * (xx - yy),
xx1053 = y * (30 * xx + xx159), yy1053 = x * (30 * yy + yy159);
Double_t X1[3] = {xy, -xx - 1, y}
,
X2[3][3] = {{x * yy31, -y * xx31, 2 * yy + 1},
{-y * xx31, x * xx33, -2 * xy},
{yy - xx, -2 * xy, -x}}
,
X3[3][3][3] = {
{{xy * yy159, -xx * yy153 - yy31, y * yy86},
{-xx * yy153 - yy31, xy * xx159, -x * yy82},
{y2 * (-xxyy2 + 1), -x * yy82, -3 * xy}},
{{-xx * yy153 - yy31, xy * xx159, -x * yy82},
{xy * xx159, -3 * (5 * xx * xx + 6 * xx + 1), y * xx82},
{x2 * (xxyy2 + 1), y * xx82, xx31}},
{{y * (-6 * xx + yy31), x * (xx31 - 6 * yy), -4 * xy},
{x * (3 * xx - 6 * yy + 1), 3 * y * xx31, xxyy2},
{-4 * xy, xxyy2, -y}}};
Double_t X1x[3] = {y, -x2, 0}
,
X2x[3][3] = {{yy31, -6 * xy, 0},
{-6 * xy, 3 * xx31, -y2},
{-x2, -y2, -1}}
,
X3x[3][3][3] = {{{y * yy159, -x2 * yy153, 0},
{-x2 * yy153, xx1053, -yy82},
{-8 * xy, -yy82, -3 * y}},
{{-x2 * yy153, xx1053, -yy82},
{xx1053, -x4 * xx159, 16 * xy},
{2 * (6 * xx - 2 * yy + 1), 16 * xy, 6 * x}},
{{-12 * xy, 9 * xx - 6 * yy + 1, -y4},
{9 * xx - 6 * yy + 1, 18 * xy, x4},
{-y4, x4, 0}}};
Double_t X1y[3] = {x, 0, 1}
,
X2y[3][3] = {{6 * xy, -xx31, y4}, {-xx31, 0, -x2}, {y2, -x2, 0}}
,
X3y[3][3][3] = {{{yy1053, -y2 * xx153, 16 * yy + yy86},
{-y2 * xx153, x * xx159, -16 * xy},
{yy82 - 2 * xxyy2, -16 * xy, -3 * x}},
{{-y2 * xx153, x * xx159, -16 * xy},
{x * xx159, 0, xx82},
{-8 * xy, xx82, 0}},
{{-6 * xx + 9 * yy + 1, -12 * xy, -x4},
{-12 * xy, 3 * xx31, -y4},
{-x4, -y4, -1}}};
Double_t Y1[3] = {yy + 1, -xy, -x}
,
Y2[3][3] = {{y * yy33, -x * yy31, -2 * xy},
{-x * yy31, y * xx31, 2 * xx + 1},
{-2 * xy, xx - yy, -y}}
,
Y3[3][3][3] = {
{{3 * (5 * yy * yy + 6 * yy + 1), -xy * yy159, -x * yy82},
{-xy * yy159, xx * yy153 + yy31, y * xx82},
{-x * yy82, -y2 * (-xxyy2 + 1), -yy31}},
{{-xy * yy159, xx * yy153 + yy31, y * xx82},
{xx * yy153 + yy31, -xy * xx159, -x * xx86},
{y * xx82, -x2 * (xxyy2 + 1), 3 * xy}},
{{-3 * x * yy31, y * (6 * xx - yy31), xxyy2},
{y * (6 * xx - yy31), x * (6 * yy - xx31), 4 * xy},
{xxyy2, 4 * xy, x}}};
Double_t Y1x[3] = {0, -y, -1}
,
Y2x[3][3] = {{0, -yy31, -y2}, {-yy31, 6 * xy, x4}, {-y2, x2, 0}}
,
Y3x[3][3][3] = {{{0, -y * yy159, -yy82},
{-y * yy159, x2 * yy153, 16 * xy},
{-yy82, 8 * xy, 0}},
{{-y * yy159, x2 * yy153, 16 * xy},
{x2 * yy153, -xx1053, -16 * xx - xx86},
{16 * xy, -2 * (6 * xx - 2 * yy + 1), 3 * y}},
{{-3 * yy31, 12 * xy, x4},
{12 * xy, -9 * xx + 6 * yy - 1, y4},
{x4, y4, 1}}};
Double_t Y1y[3] = {y2, -x, 0}
,
Y2y[3][3] = {{3 * yy31, -6 * xy, -x2},
{-6 * xy, xx31, 0},
{-x2, -y2, -1}}
,
Y3y[3][3][3] = {{{y4 * yy159, -yy1053, -16 * xy},
{-yy1053, y2 * xx153, xx82},
{-16 * xy, 4 * xx - 12 * yy - 2, -6 * y}},
{{-yy1053, y2 * xx153, xx82},
{y2 * xx153, -x * xx159, 0},
{xx82, 8 * xy, 3 * x}},
{{-18 * xy, 6 * xx - 9 * yy - 1, -y4},
{6 * xx - 9 * yy - 1, 12 * xy, x4},
{-y4, x4, 0}}};
if (Xi) {
for (Int_t i = 0; i < 3; i++) {
Xi[0][i] = X1[i];
Xi[1][i] = X1x[i];
Xi[2][i] = X1y[i];
}
}
if (Yi) {
for (Int_t i = 0; i < 3; i++) {
Yi[0][i] = Y1[i];
Yi[1][i] = Y1x[i];
Yi[2][i] = Y1y[i];
}
}
if (Xii) {
for (Int_t i = 0; i < 3; i++)
for (Int_t j = 0; j < 3; j++) {
Xii[0][i][j] = X2[i][j];
Xii[1][i][j] = X2x[i][j];
Xii[2][i][j] = X2y[i][j];
}
}
if (Yii) {
for (Int_t i = 0; i < 3; i++)
for (Int_t j = 0; j < 3; j++) {
Yii[0][i][j] = Y2[i][j];
Yii[1][i][j] = Y2x[i][j];
Yii[2][i][j] = Y2y[i][j];
}
}
if (Xiii) {
for (Int_t i = 0; i < 3; i++)
for (Int_t j = 0; j < 3; j++)
for (Int_t k = 0; k < 3; k++) {
Xiii[0][i][j][k] = X3[i][j][k];
Xiii[1][i][j][k] = X3x[i][j][k];
Xiii[2][i][j][k] = X3y[i][j][k];
}
}
if (Yiii) {
for (Int_t i = 0; i < 3; i++)
for (Int_t j = 0; j < 3; j++)
for (Int_t k = 0; k < 3; k++) {
Yiii[0][i][j][k] = Y3[i][j][k];
Yiii[1][i][j][k] = Y3x[i][j][k];
Yiii[2][i][j][k] = Y3y[i][j][k];
}
}
}
/****************************************************************
*
* ANALYTIC 1-3
*
****************************************************************/
void CbmKFFieldMath::ExtrapolateAnalytic(
const Double_t T_in[], // input track parameters (x,y,tx,ty,Q/p)
const Double_t C_in[], // input covariance matrix
Double_t T_out[], // output track parameters
Double_t C_out[], // output covariance matrix
Double_t z_out, // extrapolate to this z position
Double_t qp0, // use Q/p linearisation at this value
FairField* MF, // magnetic field
Int_t order) {
//
// Part of the exact extrapolation formula with error (c_light*B*dz)^4/4!
//
// Under investigation, finally supposed to be fast.
//
const Double_t c_light = 0.000299792458;
Double_t qp_in = T_in[4];
Double_t z_in = T_in[5];
Double_t dz = z_out - z_in;
// construct coefficients
Double_t tx = T_in[2], ty = T_in[3],
A1[3][3], B1[3][3], A2[3][3][3], B2[3][3][3], A3[3][3][3][3],
B3[3][3][3][3];
GetCoefficients(tx, ty, A1, B1, A2, B2, A3, B3);
Double_t t2 = 1. + tx * tx + ty * ty, t = sqrt(t2), h = qp0 * c_light,
ht = h * t;
Double_t s1[3], s2[3][3], s3[3][3][3], S1[3], S2[3][3], S3[3][3][3];
{
Double_t r0[3], r1[3], r2[3];
r0[0] = T_in[0];
r0[1] = T_in[1];
r0[2] = T_in[5];
r2[0] = T_in[0] + T_in[2] * dz;
r2[1] = T_in[1] + T_in[3] * dz;
r2[2] = z_out;
r1[0] = 0.5 * (r0[0] + r2[0]);
r1[1] = 0.5 * (r0[1] + r2[1]);
r1[2] = 0.5 * (r0[2] + r2[2]);
Double_t B[3][3];
if (MF) {
MF->GetFieldValue(r0, B[0]);
MF->GetFieldValue(r1, B[1]);
MF->GetFieldValue(r2, B[2]);
} else
B[0][0] = B[0][1] = B[0][2] = B[1][0] = B[1][1] = B[1][2] = B[2][0] =
B[2][1] = B[2][2] = 0;
Double_t Sy = (7 * B[0][1] + 6 * B[1][1] - B[2][1]) * dz * dz / 96.;
r1[0] = T_in[0] + tx * dz / 2 + ht * Sy * A1[0][1];
r1[1] = T_in[1] + ty * dz / 2 + ht * Sy * B1[0][1];
Sy = (B[0][1] + 2 * B[1][1]) * dz * dz / 6.;
r2[0] = T_in[0] + tx * dz + ht * Sy * A1[0][1];
r2[1] = T_in[1] + ty * dz + ht * Sy * B1[0][1];
IntegrateField(MF, r0, r1, r2, s1, S1, s2, S2, s3, S3);
}
Double_t sA1 = 0, sA2 = 0, sA3 = 0, sB1 = 0, sB2 = 0, sB3 = 0;
Double_t sA1x = 0, sA2x = 0, sA3x = 0, sB1x = 0, sB2x = 0, sB3x = 0;
Double_t sA1y = 0, sA2y = 0, sA3y = 0, sB1y = 0, sB2y = 0, sB3y = 0;
Double_t SA1 = 0, SA2 = 0, SA3 = 0, SB1 = 0, SB2 = 0, SB3 = 0;
Double_t SA1x = 0, SA2x = 0, SA3x = 0, SB1x = 0, SB2x = 0, SB3x = 0;
Double_t SA1y = 0, SA2y = 0, SA3y = 0, SB1y = 0, SB2y = 0, SB3y = 0;
{
for (Int_t n = 0; n < 3; n++) {
sA1 += s1[n] * A1[0][n];
sA1x += s1[n] * A1[1][n];
sA1y += s1[n] * A1[2][n];
sB1 += s1[n] * B1[0][n];
sB1x += s1[n] * B1[1][n];
sB1y += s1[n] * B1[2][n];
SA1 += S1[n] * A1[0][n];
SA1x += S1[n] * A1[1][n];
SA1y += S1[n] * A1[2][n];
SB1 += S1[n] * B1[0][n];
SB1x += S1[n] * B1[1][n];
SB1y += S1[n] * B1[2][n];
if (order > 1)
for (Int_t m = 0; m < 3; m++) {
sA2 += s2[n][m] * A2[0][n][m];
sA2x += s2[n][m] * A2[1][n][m];
sA2y += s2[n][m] * A2[2][n][m];
sB2 += s2[n][m] * B2[0][n][m];
sB2x += s2[n][m] * B2[1][n][m];
sB2y += s2[n][m] * B2[2][n][m];
SA2 += S2[n][m] * A2[0][n][m];
SA2x += S2[n][m] * A2[1][n][m];
SA2y += S2[n][m] * A2[2][n][m];
SB2 += S2[n][m] * B2[0][n][m];
SB2x += S2[n][m] * B2[1][n][m];
SB2y += S2[n][m] * B2[2][n][m];
if (order > 2)
for (Int_t k = 0; k < 3; k++) {
sA3 += s3[n][m][k] * A3[0][n][m][k];
sA3x += s3[n][m][k] * A3[1][n][m][k];
sA3y += s3[n][m][k] * A3[2][n][m][k];
sB3 += s3[n][m][k] * B3[0][n][m][k];
sB3x += s3[n][m][k] * B3[1][n][m][k];
sB3y += s3[n][m][k] * B3[2][n][m][k];
SA3 += S3[n][m][k] * A3[0][n][m][k];
SA3x += S3[n][m][k] * A3[1][n][m][k];
SA3y += S3[n][m][k] * A3[2][n][m][k];
SB3 += S3[n][m][k] * B3[0][n][m][k];
SB3x += S3[n][m][k] * B3[1][n][m][k];
SB3y += S3[n][m][k] * B3[2][n][m][k];
}
}
}
}
T_out[0] = T_in[0] + tx * dz + ht * (SA1 + ht * (SA2 + ht * SA3));
T_out[1] = T_in[1] + ty * dz + ht * (SB1 + ht * (SB2 + ht * SB3));
T_out[2] = T_in[2] + ht * (sA1 + ht * (sA2 + ht * sA3));
T_out[3] = T_in[3] + ht * (sB1 + ht * (sB2 + ht * sB3));
T_out[4] = T_in[4];
T_out[5] = z_out;
Double_t J[25];
// derivatives '_x
J[0] = 1;
J[1] = 0;
J[2] = 0;
J[3] = 0;
J[4] = 0;
// derivatives '_y
J[5] = 0;
J[6] = 1;
J[7] = 0;
J[8] = 0;
J[9] = 0;
// derivatives '_tx
J[10] = dz + h * tx * (1. / t * SA1 + h * (2 * SA2 + 3 * ht * SA3))
+ ht * (SA1x + ht * (SA2x + ht * SA3x));
J[11] = h * tx * (1. / t * SB1 + h * (2 * SB2 + 3 * ht * SB3))
+ ht * (SB1x + ht * (SB2x + ht * SB3x));
J[12] = 1 + h * tx * (1. / t * sA1 + h * (2 * sA2 + 3 * ht * sA3))
+ ht * (sA1x + ht * (sA2x + ht * sA3x));
J[13] = h * tx * (1. / t * sB1 + h * (2 * sB2 + 3 * ht * sB3))
+ ht * (sB1x + ht * (sB2x + ht * sB3x));
J[14] = 0;
// derivatives '_ty
J[15] = h * ty * (1. / t * SA1 + h * (2 * SA2 + 3 * ht * SA3))
+ ht * (SA1y + ht * (SA2y + ht * SA3y));
J[16] = dz + h * ty * (1. / t * SB1 + h * (2 * SB2 + 3 * ht * SB3))
+ ht * (SB1y + ht * (SB2y + ht * SB3y));
J[17] = h * ty * (1. / t * sA1 + h * (2 * sA2 + 3 * ht * sA3))
+ ht * (sA1y + ht * (sA2y + ht * sA3y));
J[18] = 1 + h * ty * (1. / t * sB1 + h * (2 * sB2 + 3 * ht * sB3))
+ ht * (sB1y + ht * (sB2y + ht * sB3y));
J[19] = 0;
// derivatives '_qp
J[20] = c_light * t * (SA1 + ht * (2 * SA2 + 3 * ht * SA3));
J[21] = c_light * t * (SB1 + ht * (2 * SB2 + 3 * ht * SB3));
J[22] = c_light * t * (sA1 + ht * (2 * sA2 + 3 * ht * sA3));
J[23] = c_light * t * (sB1 + ht * (2 * sB2 + 3 * ht * sB3));
J[24] = 1;
// extrapolate inverse momentum
T_out[4] = qp_in;
Double_t dqp = qp_in - qp0;
{
for (Int_t i = 0; i < 4; i++) {
T_out[i] += J[5 * 4 + i] * dqp;
}
}
// covariance matrix transport
if (C_in && C_out) CbmKFMath::multQtSQ(5, J, C_in, C_out);
}
/****************************************************************
*
* Analytic Central
*
****************************************************************/
void CbmKFFieldMath::ExtrapolateACentral(
const Double_t T_in[], // input track parameters (x,y,tx,ty,Q/p,z)
const Double_t C_in[], // input covariance matrix
Double_t T_out[], // output track parameters
Double_t C_out[], // output covariance matrix
Double_t z_out, // extrapolate to this z position
Double_t qp0, // use Q/p linearisation at this value
CbmMagField* MF // magnetic field
) {
//
// Part of the exact extrapolation formula with error (c_light*B*dz)^?/?!
//
// Under investigation, finally supposed to be fast.
//
const Double_t c_light = 0.000299792458;
Double_t qp_in = T_in[4];
Double_t z_in = T_in[5];
Double_t dz = z_out - z_in;
Double_t i1[3], I1[3];
{ // get integrated field
// get field value at 3 points
Double_t r[3][3];
r[0][0] = 0;
r[0][1] = 0;
r[0][2] = T_in[5];
r[2][0] = 0;
r[2][1] = 0;
r[2][2] = z_out;
r[1][0] = 0;
r[1][1] = 0;
r[1][2] = 0.5 * (r[0][2] + r[2][2]);
IntegrateField(MF, r[0], r[1], r[2], i1, I1, 0, 0, 0, 0);
} // get integrated field
Double_t x = T_in[2], // tx !!
y = T_in[3], // ty !!
xx = x * x, xy = x * y, yy = y * y,
x2 = x * 2, y2 = y * 2;
Double_t X1[3] = {xy, -xx - 1, y};
Double_t X1x[3] = {y, -x2, 0};
Double_t X1y[3] = {x, 0, 1};
Double_t Y1[3] = {yy + 1, -xy, -x};
Double_t Y1x[3] = {0, -y, -1};
Double_t Y1y[3] = {y2, -x, 0};
Double_t iX1 = 0, iY1 = 0;
Double_t iX1x = 0, iY1x = 0;
Double_t iX1y = 0, iY1y = 0;
Double_t IX1 = 0, IY1 = 0;
Double_t IX1x = 0, IY1x = 0;
Double_t IX1y = 0, IY1y = 0;
{
for (Int_t n = 0; n < 3; n++) {
if (n != 1) continue;
iX1 += i1[n] * X1[n];
iX1x += i1[n] * X1x[n];
iX1y += i1[n] * X1y[n];
iY1 += i1[n] * Y1[n];
iY1x += i1[n] * Y1x[n];
iY1y += i1[n] * Y1y[n];
IX1 += I1[n] * X1[n];
IX1x += I1[n] * X1x[n];
IX1y += I1[n] * X1y[n];
IY1 += I1[n] * Y1[n];
IY1x += I1[n] * Y1x[n];
IY1y += I1[n] * Y1y[n];
}
}
Double_t t2 = 1. + xx + yy, t = sqrt(t2), h = qp0 * c_light, ht = h * t;
T_out[0] = T_in[0] + x * dz + ht * IX1;
T_out[1] = T_in[1] + y * dz + ht * IY1;
T_out[2] = T_in[2] + ht * iX1;
T_out[3] = T_in[3] + ht * iY1;
T_out[4] = T_in[4];
T_out[5] = z_out;
Double_t J[25];
// derivatives '_x
J[0] = 1;
J[1] = 0;
J[2] = 0;
J[3] = 0;
J[4] = 0;
// derivatives '_y
J[5] = 0;
J[6] = 1;
J[7] = 0;
J[8] = 0;
J[9] = 0;
// derivatives '_tx
J[10] = dz + h * x / t * IX1 + ht * IX1x;
J[11] = h * x / t * IY1 + ht * IY1x;
J[12] = 1 + h * x / t * iX1 + ht * iX1x;
J[13] = h * x / t * iY1 + ht * iY1x;
J[14] = 0;
// derivatives '_ty
J[15] = h * y / t * IX1 + ht * IX1y;
J[16] = dz + h * y / t * IY1 + ht * IY1y;
J[17] = h * y / t * iX1 + ht * iX1y;
J[18] = 1 + h * y / t * iY1 + ht * iY1y;
J[19] = 0;
// derivatives '_qp
J[20] = c_light * t * IX1;
J[21] = c_light * t * IY1;
J[22] = c_light * t * iX1;
J[23] = c_light * t * iY1;
J[24] = 1;
// extrapolate inverse momentum
T_out[4] = qp_in;
Double_t dqp = qp_in - qp0;
{
for (Int_t i = 0; i < 4; i++) {
T_out[i] += J[5 * 4 + i] * dqp;
}
}
// covariance matrix transport
if (C_in && C_out) CbmKFMath::multQtSQ(5, J, C_in, C_out);
}
#endif
/****************************************************************
*
* Analytic Light
*
****************************************************************/
Int_t CbmKFFieldMath::ExtrapolateALight(
const Double_t T_in[], // input track parameters (x,y,tx,ty,Q/p)
const Double_t C_in[], // input covariance matrix
Double_t T_out[], // output track parameters
Double_t C_out[], // output covariance matrix
Double_t z_out, // extrapolate to this z position
Double_t qp0, // use Q/p linearisation at this value
FairField* MF // magnetic field
) {
//
// Part of the analytic extrapolation formula with error (c_light*B*dz)^4/4!
//
{
bool ok = 1;
for (int i = 0; i < 6; i++)
ok = ok && finite(T_in[i]) && (T_in[i] < 1.e5);
if (C_in)
for (int i = 0; i < 15; i++)
ok = ok && finite(C_in[i]);
if (!ok) {
for (int i = 0; i < 6; i++)
T_out[i] = 0;
if (C_out) {
for (int i = 0; i < 15; i++)
C_out[i] = 0;
C_out[0] = C_out[2] = C_out[5] = C_out[9] = C_out[14] = 100.;
}
return 1;
}
}
const Double_t c_light = 0.000299792458;
Double_t qp_in = T_in[4];
Double_t z_in = T_in[5];
Double_t dz = z_out - z_in;
// construct coefficients
Double_t x = T_in[2], // tx !!
y = T_in[3], // ty !!
xx = x * x, xy = x * y, yy = y * y, x2 = x * 2, x4 = x * 4,
xx31 = xx * 3 + 1, xx159 = xx * 15 + 9, y2 = y * 2;
Double_t Ax = xy, Ay = -xx - 1, Az = y, Ayy = x * (xx * 3 + 3), Ayz = -2 * xy,
Ayyy = -(15 * xx * xx + 18 * xx + 3),
Ax_x = y, Ay_x = -x2, Az_x = 0, Ayy_x = 3 * xx31, Ayz_x = -y2,
Ayyy_x = -x4 * xx159,
Ax_y = x, Ay_y = 0, Az_y = 1, Ayy_y = 0, Ayz_y = -x2, Ayyy_y = 0,
Bx = yy + 1, By = -xy, Bz = -x, Byy = y * xx31, Byz = 2 * xx + 1,
Byyy = -xy * xx159,
Bx_x = 0, By_x = -y, Bz_x = -1, Byy_x = 6 * xy, Byz_x = x4,
Byyy_x = -y * (45 * xx + 9),
Bx_y = y2, By_y = -x, Bz_y = 0, Byy_y = xx31, Byz_y = 0,
Byyy_y = -x * xx159;
// end of coefficients calculation
Double_t t2 = 1. + xx + yy;
if (t2 > 1.e4) return 1;
Double_t t = sqrt(t2), h = qp0 * c_light, ht = h * t;
Double_t sx = 0, sy = 0, sz = 0, syy = 0, syz = 0, syyy = 0, Sx = 0, Sy = 0,
Sz = 0, Syy = 0, Syz = 0, Syyy = 0;
{ // get field integrals
Double_t B[3][3];
Double_t r0[3], r1[3], r2[3];
// first order track approximation
r0[0] = T_in[0];
r0[1] = T_in[1];
r0[2] = T_in[5];
r2[0] = T_in[0] + T_in[2] * dz;
r2[1] = T_in[1] + T_in[3] * dz;
r2[2] = z_out;
r1[0] = 0.5 * (r0[0] + r2[0]);
r1[1] = 0.5 * (r0[1] + r2[1]);
r1[2] = 0.5 * (r0[2] + r2[2]);
MF->GetFieldValue(r0, B[0]);
MF->GetFieldValue(r1, B[1]);
MF->GetFieldValue(r2, B[2]);
Sy = (7 * B[0][1] + 6 * B[1][1] - B[2][1]) * dz * dz / 96.;
r1[0] = T_in[0] + x * dz / 2 + ht * Sy * Ay;
r1[1] = T_in[1] + y * dz / 2 + ht * Sy * By;
Sy = (B[0][1] + 2 * B[1][1]) * dz * dz / 6.;
r2[0] = T_in[0] + x * dz + ht * Sy * Ay;
r2[1] = T_in[1] + y * dz + ht * Sy * By;
Sy = 0;
// integrals
MF->GetFieldValue(r0, B[0]);
MF->GetFieldValue(r1, B[1]);
MF->GetFieldValue(r2, B[2]);
sx = (B[0][0] + 4 * B[1][0] + B[2][0]) * dz / 6.;
sy = (B[0][1] + 4 * B[1][1] + B[2][1]) * dz / 6.;
sz = (B[0][2] + 4 * B[1][2] + B[2][2]) * dz / 6.;
Sx = (B[0][0] + 2 * B[1][0]) * dz * dz / 6.;
Sy = (B[0][1] + 2 * B[1][1]) * dz * dz / 6.;
Sz = (B[0][2] + 2 * B[1][2]) * dz * dz / 6.;
Double_t c2[3][3] = {{5, -4, -1}, {44, 80, -4}, {11, 44, 5}}; // /=360.
Double_t C2[3][3] = {{38, 8, -4}, {148, 208, -20}, {3, 36, 3}}; // /=2520.
for (Int_t n = 0; n < 3; n++)
for (Int_t m = 0; m < 3; m++) {
syz += c2[n][m] * B[n][1] * B[m][2];
Syz += C2[n][m] * B[n][1] * B[m][2];
}
syz *= dz * dz / 360.;
Syz *= dz * dz * dz / 2520.;
syy = (B[0][1] + 4 * B[1][1] + B[2][1]) * dz;
syyy = syy * syy * syy / 1296;
syy = syy * syy / 72;
Syy = (B[0][1] * (38 * B[0][1] + 156 * B[1][1] - B[2][1])
+ B[1][1] * (208 * B[1][1] + 16 * B[2][1]) + B[2][1] * (3 * B[2][1]))
* dz * dz * dz / 2520.;
Syyy = (B[0][1]
* (B[0][1] * (85 * B[0][1] + 526 * B[1][1] - 7 * B[2][1])
+ B[1][1] * (1376 * B[1][1] + 84 * B[2][1])
+ B[2][1] * (19 * B[2][1]))
+ B[1][1]
* (B[1][1] * (1376 * B[1][1] + 256 * B[2][1])
+ B[2][1] * (62 * B[2][1]))
+ B[2][1] * B[2][1] * (3 * B[2][1]))
* dz * dz * dz * dz / 90720.;
}
Double_t
sA1 = sx * Ax + sy * Ay + sz * Az,
sA1_x = sx * Ax_x + sy * Ay_x + sz * Az_x,
sA1_y = sx * Ax_y + sy * Ay_y + sz * Az_y,
sB1 = sx * Bx + sy * By + sz * Bz,
sB1_x = sx * Bx_x + sy * By_x + sz * Bz_x,
sB1_y = sx * Bx_y + sy * By_y + sz * Bz_y,
SA1 = Sx * Ax + Sy * Ay + Sz * Az,
SA1_x = Sx * Ax_x + Sy * Ay_x + Sz * Az_x,
SA1_y = Sx * Ax_y + Sy * Ay_y + Sz * Az_y,
SB1 = Sx * Bx + Sy * By + Sz * Bz,
SB1_x = Sx * Bx_x + Sy * By_x + Sz * Bz_x,
SB1_y = Sx * Bx_y + Sy * By_y + Sz * Bz_y,
sA2 = syy * Ayy + syz * Ayz, sA2_x = syy * Ayy_x + syz * Ayz_x,
sA2_y = syy * Ayy_y + syz * Ayz_y, sB2 = syy * Byy + syz * Byz,
sB2_x = syy * Byy_x + syz * Byz_x, sB2_y = syy * Byy_y + syz * Byz_y,
SA2 = Syy * Ayy + Syz * Ayz, SA2_x = Syy * Ayy_x + Syz * Ayz_x,
SA2_y = Syy * Ayy_y + Syz * Ayz_y, SB2 = Syy * Byy + Syz * Byz,
SB2_x = Syy * Byy_x + Syz * Byz_x, SB2_y = Syy * Byy_y + Syz * Byz_y,
sA3 = syyy * Ayyy, sA3_x = syyy * Ayyy_x, sA3_y = syyy * Ayyy_y,
sB3 = syyy * Byyy, sB3_x = syyy * Byyy_x, sB3_y = syyy * Byyy_y,
SA3 = Syyy * Ayyy, SA3_x = Syyy * Ayyy_x, SA3_y = Syyy * Ayyy_y,
SB3 = Syyy * Byyy, SB3_x = Syyy * Byyy_x, SB3_y = Syyy * Byyy_y;
T_out[0] = T_in[0] + x * dz + ht * (SA1 + ht * (SA2 + ht * SA3));
T_out[1] = T_in[1] + y * dz + ht * (SB1 + ht * (SB2 + ht * SB3));
T_out[2] = T_in[2] + ht * (sA1 + ht * (sA2 + ht * sA3));
T_out[3] = T_in[3] + ht * (sB1 + ht * (sB2 + ht * sB3));
T_out[4] = T_in[4];
T_out[5] = z_out;
Double_t J[25];
// derivatives '_x
J[0] = 1;
J[1] = 0;
J[2] = 0;
J[3] = 0;
J[4] = 0;
// derivatives '_y
J[5] = 0;
J[6] = 1;
J[7] = 0;
J[8] = 0;
J[9] = 0;
// derivatives '_tx
J[10] = dz + h * x * (1. / t * SA1 + h * (2 * SA2 + 3 * ht * SA3))
+ ht * (SA1_x + ht * (SA2_x + ht * SA3_x));
J[11] = h * x * (1. / t * SB1 + h * (2 * SB2 + 3 * ht * SB3))
+ ht * (SB1_x + ht * (SB2_x + ht * SB3_x));
J[12] = 1 + h * x * (1. / t * sA1 + h * (2 * sA2 + 3 * ht * sA3))
+ ht * (sA1_x + ht * (sA2_x + ht * sA3_x));
J[13] = h * x * (1. / t * sB1 + h * (2 * sB2 + 3 * ht * sB3))
+ ht * (sB1_x + ht * (sB2_x + ht * sB3_x));
J[14] = 0;
// derivatives '_ty
J[15] = h * y * (1. / t * SA1 + h * (2 * SA2 + 3 * ht * SA3))
+ ht * (SA1_y + ht * (SA2_y + ht * SA3_y));
J[16] = dz + h * y * (1. / t * SB1 + h * (2 * SB2 + 3 * ht * SB3))
+ ht * (SB1_y + ht * (SB2_y + ht * SB3_y));
J[17] = h * y * (1. / t * sA1 + h * (2 * sA2 + 3 * ht * sA3))
+ ht * (sA1_y + ht * (sA2_y + ht * sA3_y));
J[18] = 1 + h * y * (1. / t * sB1 + h * (2 * sB2 + 3 * ht * sB3))
+ ht * (sB1_y + ht * (sB2_y + ht * sB3_y));
J[19] = 0;
// derivatives '_qp
J[20] = c_light * t * (SA1 + ht * (2 * SA2 + 3 * ht * SA3));
J[21] = c_light * t * (SB1 + ht * (2 * SB2 + 3 * ht * SB3));
J[22] = c_light * t * (sA1 + ht * (2 * sA2 + 3 * ht * sA3));
J[23] = c_light * t * (sB1 + ht * (2 * sB2 + 3 * ht * sB3));
J[24] = 1;
// extrapolate inverse momentum
T_out[4] = qp_in;
Double_t dqp = qp_in - qp0;
{
for (Int_t i = 0; i < 4; i++) {
T_out[i] += J[5 * 4 + i] * dqp;
}
}
// covariance matrix transport
if (C_in && C_out) CbmKFMath::multQtSQ(5, J, C_in, C_out);
return 0;
}