-
Updates T0 digi classes with Bmon exquivalents. Standardises the use of Bmon across code base and, in-use and legacy macros.
Updates T0 digi classes with Bmon exquivalents. Standardises the use of Bmon across code base and, in-use and legacy macros.
TrackingChain.cxx 9.92 KiB
/* Copyright (C) 2023 GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt
SPDX-License-Identifier: GPL-3.0-only
Authors: Sergei Zharko [committer] */
/// \file TrackingChain.cxx
/// \date 14.09.2023
/// \brief A chain class to execute CA tracking algorithm in online reconstruction (implementation)
/// \author S.Zharko <s.zharko@gsi.de>
#include "TrackingChain.h"
#include "tof/Config.h"
#include <fstream>
#include <unordered_map>
#include <xpu/host.h>
#include "CaConstants.h"
#include "CaHit.h"
#include "CaInitManager.h"
#include "CaParameters.h"
using namespace cbm::algo;
using cbm::algo::TrackingChain;
using cbm::algo::ca::EDetectorID;
using cbm::algo::ca::Framework;
using cbm::algo::ca::HitTypes_t;
using cbm::algo::ca::InitManager;
using cbm::algo::ca::Parameters;
using cbm::algo::ca::Track;
using cbm::algo::ca::constants::clrs::CL; // clear text
using cbm::algo::ca::constants::clrs::GNb; // grin bald text
// ---------------------------------------------------------------------------------------------------------------------
//
void TrackingChain::Init()
{
// ------ Read parameters from binary
std::string paramFileBase = "mcbm_beam_2022_05_23_nickel.ca.par"; // TODO: Get the setup name from Opts()
auto paramFile = Opts().ParamsDir();
paramFile /= paramFileBase;
L_(info) << "Tracking Chain: reading CA parameters file " << GNb << paramFile.string() << CL << '\n';
auto manager = InitManager {};
manager.ReadParametersObject(paramFile.string());
auto parameters = manager.TakeParameters();
L_(info) << "Tracking Chain: parameters object: \n" << parameters.ToString(1) << '\n';
// ------ Initialize CA framework
fCaMonitor.Reset();
fCaFramework.Init(ca::Framework::TrackingMode::kMcbm);
fCaFramework.ReceiveParameters(std::move(parameters));
}
// ---------------------------------------------------------------------------------------------------------------------
//
TrackingChain::Output_t TrackingChain::Run(Input_t recoResults)
{
xpu::scoped_timer t_("CA"); // TODO: pass timings to monitoring for throughput?
fCaMonitorData.Reset();
// ----- Init input data ---------------------------------------------------------------------------------------------
fCaMonitorData.StartTimer(ca::ETimer::PrepareInput);
this->PrepareInput(recoResults);
fCaMonitorData.StopTimer(ca::ETimer::PrepareInput);
// ----- Run reconstruction ------------------------------------------------------------------------------------------
fCaFramework.SetMonitorData(fCaMonitorData);
fCaFramework.fTrackFinder.FindTracks();
fCaMonitorData = fCaFramework.GetMonitorData();
// ----- Init output data --------------------------------------------------------------------------------------------
return PrepareOutput();
}
// ---------------------------------------------------------------------------------------------------------------------
//
void TrackingChain::Finalize() { L_(info) << fCaMonitor.ToString(); }
// ---------------------------------------------------------------------------------------------------------------------
//
void TrackingChain::PrepareInput(Input_t recoResults)
{
fNofHitKeys = 0;
int nHitsTot = recoResults.stsHits.NElements() + recoResults.tofHits.NElements();
L_(info) << "Tracking chain: input has " << nHitsTot << " hits";
fCaDataManager.ResetInputData(nHitsTot);
faHitExternalIndices.clear();
faHitExternalIndices.reserve(nHitsTot);
ReadHits<EDetectorID::Sts>(recoResults.stsHits);
ReadHits<EDetectorID::Tof>(recoResults.tofHits);
faHitExternalIndices.shrink_to_fit();
fCaDataManager.SetNhitKeys(fNofHitKeys);
L_(info) << "Tracking chain:" << fCaDataManager.GetNofHits() << " hits will be passed to the ca::Framework";
fCaFramework.ReceiveInputData(fCaDataManager.TakeInputData());
}
// ---------------------------------------------------------------------------------------------------------------------
//
TrackingChain::Output_t TrackingChain::PrepareOutput()
{
Output_t output;
output.tracks = std::move(fCaFramework.fRecoTracks);
int nTracks = output.tracks.size();
output.stsHitIndices.reset(nTracks);
output.tofHitIndices.reset(nTracks);
int trackFirstHit = 0;
for (int iTrk = 0; iTrk < nTracks; ++iTrk) {
output.stsHitIndices[iTrk].clear();
output.tofHitIndices[iTrk].clear();
int nHits = output.tracks[iTrk].fNofHits;
for (int iHit = 0; iHit < nHits; ++iHit) {
int iHitInternal = fCaFramework.GetInputData().GetHit(fCaFramework.fRecoHits[trackFirstHit + iHit]).Id();
const auto [detID, iPartition, iPartHit] = faHitExternalIndices[iHitInternal];
switch (detID) {
case ca::EDetectorID::Sts: output.stsHitIndices[iTrk].push_back(std::make_pair(iPartition, iPartHit)); break;
case ca::EDetectorID::Tof: output.tofHitIndices[iTrk].push_back(std::make_pair(iPartition, iPartHit)); break;
default: break;
}
}
fCaMonitorData.IncrementCounter(ca::ECounter::RecoStsHit, output.stsHitIndices[iTrk].size());
fCaMonitorData.IncrementCounter(ca::ECounter::RecoTofHit, output.tofHitIndices[iTrk].size());
trackFirstHit += nHits;
}
L_(info) << "TrackingChain: Timeslice contains " << fCaMonitorData.GetCounterValue(ca::ECounter::RecoTrack)
<< " tracks, with " << fCaMonitorData.GetCounterValue(ca::ECounter::RecoStsHit) << " sts hits, "
<< fCaMonitorData.GetCounterValue(ca::ECounter::RecoTofHit) << " tof hits; the FindTracks routine ran "
<< fCaMonitorData.GetTimer(ca::ETimer::FindTracks).GetTotal() << " s";
fCaMonitor.AddMonitorData(fCaMonitorData);
output.monitorData = fCaMonitorData;
return output;
}
// ---------------------------------------------------------------------------------------------------------------------
//
template<EDetectorID DetID>
void TrackingChain::ReadHits(PartitionedSpan<const ca::HitTypes_t::at<DetID>> hits)
{
std::ofstream out;
if constexpr (kDEBUG) { out.open(std::string("./Debug_hits_") + ca::kDetName[DetID] + ".txt"); }
using Hit_t = ca::HitTypes_t::at<DetID>;
constexpr bool IsMvd = (DetID == EDetectorID::Mvd);
constexpr bool IsSts = (DetID == EDetectorID::Sts);
constexpr bool IsMuch = (DetID == EDetectorID::Much);
constexpr bool IsTrd = (DetID == EDetectorID::Trd);
constexpr bool IsTof = (DetID == EDetectorID::Tof);
xpu::t_add_bytes(hits.NElements() * sizeof(Hit_t)); // Assumes call from Run, for existence of timer!
ca::HitKeyIndex_t firstHitKey = fNofHitKeys;
int64_t dataStreamDet = static_cast<int64_t>(DetID) << 60; // detector part of the data stream
int64_t dataStream = 0;
for (size_t iPartition = 0; iPartition < hits.NPartitions(); ++iPartition, ++dataStream) {
const auto& [vHits, extHitAddress] = hits.Partition(iPartition);
// ---- Define data stream and station index
//int64_t dataStream = dataStreamDet | extHitAddress;
int iStLocal = -1;
// FIXME: This definition of the station index works only for STS, and there is no any guaranty, that it will
// work for other mCBM setups.
if constexpr (IsSts) { iStLocal = (extHitAddress >> 4) & 0xF; }
if constexpr (IsTof) {
iStLocal = tof::Config::GetTofTrackingStation(extHitAddress);
if (tof::Config::IsBmon(extHitAddress)) { continue; } // skip hits from Bmon
}
int iStActive = (iStLocal != -1) ? fCaFramework.GetParameters().GetStationIndexActive(iStLocal, DetID) : -1;
size_t iOffset = hits.Offsets()[iPartition];
if (iStActive < 0) { continue; }
double lastTime = -1e9;
double prevTime = -1;
for (size_t iPartHit = 0; iPartHit < vHits.size(); ++iPartHit) {
const auto& hit = vHits[iPartHit];
int iHitExt = iOffset + iPartHit;
// ---- Fill ca::Hit
ca::Hit caHit;
if constexpr (IsSts) {
caHit.SetFrontKey(firstHitKey + hit.fFrontClusterId);
caHit.SetBackKey(firstHitKey + hit.fBackClusterId);
}
else {
caHit.SetFrontKey(firstHitKey + iHitExt);
caHit.SetBackKey(caHit.FrontKey());
}
caHit.SetX(hit.X());
caHit.SetY(hit.Y());
caHit.SetZ(hit.Z());
caHit.SetT(hit.Time());
caHit.SetDx2(hit.Dx() * hit.Dx());
caHit.SetDy2(hit.Dy() * hit.Dy());
if constexpr (IsSts) caHit.SetDxy(hit.fDxy);
caHit.SetDt2(hit.TimeError() * hit.TimeError());
/// FIXME: Define ranges from the hit, when will be available
caHit.SetRangeX(3.5 * hit.Dx());
caHit.SetRangeY(3.5 * hit.Dy());
caHit.SetRangeT(3.5 * hit.TimeError());
caHit.SetStation(iStActive);
caHit.SetId(fCaDataManager.GetNofHits());
if (caHit.Check()) {
if ((caHit.T() < lastTime - 1000.) && (dataStream < 100000)) { dataStream++; }
lastTime = caHit.T();
if (!IsTof) { dataStream = extHitAddress; }
fCaDataManager.PushBackHit(caHit, dataStreamDet | dataStream);
faHitExternalIndices.push_back(std::make_tuple(DetID, iPartition, iPartHit));
if constexpr (kDEBUG) {
out << (dataStreamDet | dataStream) << " ----- " << caHit.ToString() << '\n';
if (prevTime > caHit.T()) { out << "TIME IS UNSORTED\n"; }
}
if (fNofHitKeys <= caHit.FrontKey()) { fNofHitKeys = caHit.FrontKey() + 1; }
if (fNofHitKeys <= caHit.BackKey()) { fNofHitKeys = caHit.BackKey() + 1; }
}
else {
if constexpr (IsMvd) { fCaMonitorData.IncrementCounter(ca::ECounter::UndefinedMvdHit); }
if constexpr (IsSts) { fCaMonitorData.IncrementCounter(ca::ECounter::UndefinedStsHit); }
if constexpr (IsMuch) { fCaMonitorData.IncrementCounter(ca::ECounter::UndefinedMuchHit); }
if constexpr (IsTrd) { fCaMonitorData.IncrementCounter(ca::ECounter::UndefinedTrdHit); }
if constexpr (IsTof) { fCaMonitorData.IncrementCounter(ca::ECounter::UndefinedTofHit); }
}
prevTime = caHit.T();
// ---- Update number of hit keys
} // iPartHit
} // iPartition
}
// template void TrackingChain::ReadHits<EDetectorID::Sts>(const PartitionedPODVector<HitTypes_t::at<EDetectorID::Sts>>&);