diff --git a/macro/much/fair/create_MUCH_geometry_v22a_jpsi.C b/macro/much/fair/create_MUCH_geometry_v22a_jpsi.C new file mode 100644 index 0000000000000000000000000000000000000000..99f16d5d5787b39562cc3744c06eed9186b98ddf --- /dev/null +++ b/macro/much/fair/create_MUCH_geometry_v22a_jpsi.C @@ -0,0 +1,1122 @@ +/* Copyright (C) 2021 Department of Physics, Aligarh Muslim University, Aligarh + SPDX-License-Identifier: GPL-3.0-only + Authors: Omveer Singh [committer] */ + +// +// \file create_MUCH_geometry_v21a +// @Author: Omveer Singh , Partha Pratim Bhaduri & Ekata Nandy + +//Updated Aug 27, 2020 (Osingh): Passive material implemented in GEM modules. Ar:CO2 (70:30) is used as active gas. +// \brief Generates MUCH geometry in Root format. +//######################################################################################################################################### +// The first absorber is 28 cm low density carbon (density 1.78 g/cm^3) + 30 cm concrete. +// The shield inside the first absorber is composed of 28 cm of Al + 30 cm of lead. Rest are made of Iron. +// For first absorber, the opening angle of the hole in the shield is decreased from 2.9 to 2.5 degrees for first absorber. +// The Al shields in the absorbers 2-5 have same thickness as the absorbers. The beam pipe passes through the cylindrical hole inside the shields. +// First two stations (1,2) made up of GEM and last two stations (3,4) made up of RPC. +// 12 mm thick Aluminium plates is used for support and cooling in the GEM modules. +// Drift and read-out PCBs (copper coated G10 plates) have been inserted for realistic material budget for both GEM and RPC modules. +//########################################################################################################################################### + +// in root all sizes are given in cm + + +#include "TClonesArray.h" +#include "TDatime.h" +#include "TFile.h" +#include "TGeoBBox.h" +#include "TGeoCompositeShape.h" +#include "TGeoCone.h" +#include "TGeoManager.h" +#include "TGeoMaterial.h" +#include "TGeoMatrix.h" +#include "TGeoMedium.h" +#include "TGeoPgon.h" +#include "TGeoTube.h" +#include "TGeoVolume.h" +#include "TGeoXtru.h" +#include "TList.h" +#include "TMath.h" +#include "TObjArray.h" +#include "TRandom3.h" +#include "TString.h" +#include "TSystem.h" + +#include <cassert> +#include <fstream> +#include <iostream> +#include <stdexcept> + + +// Name of output file with geometry +const TString tagVersion = "_v22a"; +const TString subVersion = "_jpsi"; +const TString geoVersion = "much"; // + tagVersion + subVersion; +const TString FileNameSim = geoVersion + tagVersion + subVersion + ".geo.root"; +const TString FileNameGeo = geoVersion + tagVersion + subVersion + "_geo.root"; +//const TString FileNameInfo = geoVersion + tagVersion + subVersion+".geo.info"; + +// Names of the different used materials which are used to build the modules +// The materials are defined in the global media.geo file +const TString KeepingVolumeMedium = "air"; +const TString L = "MUCHlead"; +const TString I = "MUCHiron"; +const TString I_fifth = "MUCHironfifth"; +const TString activemedium = "MUCHGEMmixture"; +const TString spacermedium = "MUCHnoryl"; +const TString LDcarbon = "MUCHcarbonLD"; //Low density Carbon for Ist Abs +const TString Concrete = "MUCHconcrete"; //Concrete for Ist Abs +const TString Al = "MUCHaluminium"; //Al for cooling & support purpose +const TString copper = "MUCHcopper"; +const TString g10 = "MUCHG10"; +const TString RPCm = "MUCHRPCgas"; +const TString RPCg = "MUCHRPCglass"; +const TString Kapton = "MUCHkapton"; + +// Universal input parameters + +Double_t fMuchZ1 = 125.0; // MuchCave Zin position [cm] +Double_t fAcceptanceTanMin = 0.1; // Acceptance tangent min +Double_t fAcceptanceTanMax = 0.466; // Acceptance tangent max + +//************************************************************ + + +// Input parameters for absorbers +//*********************************************************** +const Int_t fAbs = 5; +const Int_t fNabs = 7; // Number of absorber pieces +TString AbsMaterial[7] = {"LD Graphite", "LD Graphite", "Concrete", "Iron", "Iron", "Iron", "Iron_fifth"}; +// Absorber Zin position [cm] in the cave reference frame +Double_t fAbsorberZ1[7] = {0, 16, 28, 90, 140, 190, 252}; +// Absorber thickness [cm] +Double_t fAbsorberLz[7] = {16, 12, 30, 20, 20, 30, 100}; +Double_t safetyrad[7] = {0.0, 0.0, 0.0, 30.0, 30.0, 30.0, 30.0}; + +//..........All the dimensions of the 5th absorber is mentioned here............... +TVector3 posfifthabsorber; +Int_t noofblocks = 8; +Double_t open_x = 110.; +Double_t open_y = 30.0; +Double_t open_z = 50.0; +Double_t sh_x = 30.0; +Double_t sh_y = 30.0; +Double_t sh_z = 25.; +Double_t block_x = 250.0; +Double_t block_y = 27.5; +Double_t block_z = 50.0; +Double_t distance_between_blocks = 0.3; +Double_t gap_al_iron = 0.3; +//........................ + + +// Input parameters for MUCH stations +//******************************************** + +const Int_t fNst = 4; // Number of stations +// Sector-type module parameters +// Number of sectors per layer (should be even for symmetry) +// Needs to be fixed with actual numbers +Int_t fNSectorsPerLayer[4] = {16, 20, 18, 20}; +//Double_t fRpcGlassDz[4] = {0.0,0.0,0.2,0.2}; //Rpc Glass thickness [cm] +Double_t fSpacerR = 2.0; // Spacer width in R [cm] +Double_t fSpacerPhi = 2.0; // Spacer width in Phi [cm] +Double_t fOverlapR = 2.0; // Overlap in R direction [cm] + +// Station Zceneter [cm] in the cave reference frame + +Double_t fStationZ0[4] = {75, 125, 175, 235}; +Int_t fNlayers[4] = {3, 3, 3, 3}; // Number of layers +Int_t fDetType[4] = {3, 3, 4, 4}; // Detector type +Double_t fLayersDz[4] = {10, 10, 10, 10}; + + +// Input parameters for beam pipe shielding +// spans from 2.9 degree to 5.1 degree +//Inner radius is tan(2.9) + 2 cm, extra 20 mm for clamp connection + +const Int_t fNshs = 6; +TString ShMaterial[6] = {"Al", "Pb", "Al", "Al", "Al", "Al"}; +Double_t fShieldZin[6] = {125, 153.0, 215.0, 265.0, 315.0, 377.0}; +Double_t fShieldLz[6] = {28, 30, 20, 20, 30, 50}; +Double_t fShield_AcceptanceTanMin[6] = {0.043, 0.043, 0.051, 0.051, 0.051, 0.051}; // Acceptance tangent min for shield +Double_t fShield_AcceptanceTanMax[6] = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1}; // Acceptance tangent max for shield + + +//*********************************************************** + +// some global variables +TGeoManager* gGeoMan = NULL; // Pointer to TGeoManager instance +TGeoVolume* gModules[fNabs]; // Global storage for module types +TGeoVolume* gModules_shield[fNshs]; // Global storage for module types +TGeoVolume* gModules_station[fNst]; // Global storage for module types + +// Forward declarations +void create_materials_from_media_file(); +TGeoVolume* CreateAbsorbers(int iabs); +TGeoVolume* CreateShields(int ishield); +TGeoVolume* CreateShieldfifthabsorber(int ishield); +TGeoVolume* CreateStations(int ist); +TGeoVolume* CreateGemLayers(int istn, int ily); +TGeoVolume* CreateRpcLayers(int istn, int ily); + + +fstream infoFile; +void create_MUCH_geometry_v22a_jpsi() +{ + + + // ------- Open info file ----------------------------------------------- + TString infoFileName = FileNameSim; + infoFileName.ReplaceAll("root", "info"); + infoFile.open(infoFileName.Data(), fstream::out); + infoFile << "MUCH geometry created with create_MUCH_geometry_v21a_lmvm.C" << endl << endl; + infoFile << "Global Variables: " << endl; + infoFile << "MuchCave Zin position = " << fMuchZ1 << " cm " << endl; + infoFile << "Acceptance tangent min = " << fAcceptanceTanMin << endl; + infoFile << "Acceptance tangent max = " << fAcceptanceTanMax << endl; + + // Load needed material definition from media.geo file + create_materials_from_media_file(); + + // Get the GeoManager for later usage + gGeoMan = (TGeoManager*) gROOT->FindObject("FAIRGeom"); + gGeoMan->SetVisLevel(10); + + // Create the top volume + TGeoBBox* topbox = new TGeoBBox("", 1000., 1000., 2000.); + TGeoVolume* top = new TGeoVolume("top", topbox, gGeoMan->GetMedium("air")); + gGeoMan->SetTopVolume(top); + + TString topName = geoVersion + tagVersion + subVersion; + + TGeoVolume* much = new TGeoVolumeAssembly(topName); + top->AddNode(much, 1); + + TGeoVolume* absr = new TGeoVolumeAssembly("absorber"); + much->AddNode(absr, 1); + + TGeoVolume* shld = new TGeoVolumeAssembly("shield"); + much->AddNode(shld, 1); + + TGeoVolume* sttn = new TGeoVolumeAssembly("station"); + much->AddNode(sttn, 1); + + infoFile << endl; + infoFile << " Absorbers " << endl; + infoFile << " -----------" << endl; + infoFile << "Total No. of Absorbers: " << fAbs << endl; + infoFile << "First abosrber is divided into two halves." << endl; + infoFile << "First half inserted inside the Dipole Magnet." << endl; + infoFile << "Second half is made of Low Density Graphite + Concrete." << endl; + infoFile << "Total No. of Pieces: " << fNabs << endl; + infoFile << endl; + infoFile << "AbsPieces Position[cm] Thickness[cm] Material" << endl; + infoFile << "--------------------------------------------------------------" << endl; + + for (Int_t iabs = 0; iabs < fNabs; iabs++) { + + gModules[iabs] = CreateAbsorbers(iabs); + + absr->AddNode(gModules[iabs], iabs); + } + + + infoFile << endl; + infoFile << " Shielding " << endl; + infoFile << " -----------" << endl; + infoFile << "No. of Shields: " << fNshs << endl; + infoFile << "Inside the Abs I, Shielding divided into two parts." << endl; + infoFile << endl; + infoFile << "Shield No. Z_In[cm] Z_Out[cm] R_In[cm] R_Out[cm] Material" << endl; + infoFile << "--------------------------------------------------------------" << endl; + for (Int_t ishi = 0; ishi < fNshs; ishi++) { + + if (ishi < 5) { + gModules_shield[ishi] = CreateShields(ishi); + + shld->AddNode(gModules_shield[ishi], ishi); + } + + else { + gModules_shield[ishi] = CreateShieldfifthabsorber(ishi); + + shld->AddNode(gModules_shield[ishi], ishi); + } + } + infoFile << " 5 377 477 25.00 25.00 Al" << endl; + infoFile << endl; + infoFile << " Stations " << endl; + infoFile << " ----------" << endl; + infoFile << "No. of Stations: " << fNst << endl; + infoFile << "First two stations (1,2) are made up of GEM and last two stations (3,4) are made up of RPC." << endl; + infoFile << "Passive material implemented in GEM modules. Ar:CO2 (70:30) is used as active gas. " << endl; + infoFile << "12 mm thick Al plates are used for support and cooling in the GEM modules." << endl; + infoFile << "2 mm thick Aluminum plates are used for support in the RPC modules behind the active area. 10 mm thick " + "Aluminium at the boundaries as the frame." + << endl; + infoFile << "Drift and read-out PCBs (copper coated G10 plates) inserted for realistic material budget for both GEM " + "and RPC modules." + << endl; + infoFile << "#Station #Layers Z[cm] #Sectors ActiveLz[cm]" << endl; + infoFile << "--------------------------------------------------------------" << endl; + for (Int_t istn = 0; istn < 4; istn++) { // 4 Stations + + + gModules_station[istn] = CreateStations(istn); + + sttn->AddNode(gModules_station[istn], istn); + } + + gGeoMan->CloseGeometry(); + gGeoMan->CheckOverlaps(0.0000001); + gGeoMan->PrintOverlaps(); + + gGeoMan->CheckOverlaps(0.0001, "s"); + gGeoMan->PrintOverlaps(); + + + much->Export(FileNameSim); // an alternative way of writing the much + + TFile* outfile = new TFile(FileNameSim, "UPDATE"); + TGeoTranslation* much_placement = new TGeoTranslation("much_trans", 0., 0., -40.); + much_placement->Write(); + outfile->Close(); + + outfile = new TFile(FileNameGeo, "RECREATE"); + gGeoMan->Write(); // use this if you want GeoManager format in the output + outfile->Close(); + + top->Draw("ogl"); + infoFile.close(); +} + +void create_materials_from_media_file() +{ + // Use the FairRoot geometry interface to load the media which are already defined + FairGeoLoader* geoLoad = new FairGeoLoader("TGeo", "FairGeoLoader"); + FairGeoInterface* geoFace = geoLoad->getGeoInterface(); + TString geoPath = gSystem->Getenv("VMCWORKDIR"); + TString geoFile = geoPath + "/geometry/media.geo"; + geoFace->setMediaFile(geoFile); + geoFace->readMedia(); + + // Read the required media and create them in the GeoManager + FairGeoMedia* geoMedia = geoFace->getMedia(); + FairGeoBuilder* geoBuild = geoLoad->getGeoBuilder(); + + FairGeoMedium* air = geoMedia->getMedium(KeepingVolumeMedium); + geoBuild->createMedium(air); + + FairGeoMedium* MUCHiron = geoMedia->getMedium(I); + geoBuild->createMedium(MUCHiron); + + FairGeoMedium* MUCHironfifth = geoMedia->getMedium(I_fifth); + geoBuild->createMedium(MUCHironfifth); + + FairGeoMedium* MUCHlead = geoMedia->getMedium(L); + geoBuild->createMedium(MUCHlead); + + FairGeoMedium* MUCHargon = geoMedia->getMedium(activemedium); + geoBuild->createMedium(MUCHargon); + + FairGeoMedium* MUCHnoryl = geoMedia->getMedium(spacermedium); + geoBuild->createMedium(MUCHnoryl); + + FairGeoMedium* MUCHsupport = geoMedia->getMedium(Al); + geoBuild->createMedium(MUCHsupport); + + FairGeoMedium* MUCHcarbonLD = geoMedia->getMedium(LDcarbon); + geoBuild->createMedium(MUCHcarbonLD); + + FairGeoMedium* MUCHconcrete = geoMedia->getMedium(Concrete); + geoBuild->createMedium(MUCHconcrete); + + FairGeoMedium* copperplate = geoMedia->getMedium(copper); + geoBuild->createMedium(copperplate); + + FairGeoMedium* g10plate = geoMedia->getMedium(g10); //G10 + geoBuild->createMedium(g10plate); + + FairGeoMedium* RPCmedium = geoMedia->getMedium(RPCm); + geoBuild->createMedium(RPCmedium); + + FairGeoMedium* RPCmaterial = geoMedia->getMedium(RPCg); + geoBuild->createMedium(RPCmaterial); + + FairGeoMedium* kapton = geoMedia->getMedium(Kapton); + geoBuild->createMedium(kapton); +} + + +TGeoVolume* CreateShields(int ish) +{ + + + TGeoMedium* iron = gGeoMan->GetMedium(I); + TGeoMedium* lead = gGeoMan->GetMedium(L); + TGeoMedium* Aluminium = gGeoMan->GetMedium(Al); + + TString name = Form("shieldblock%d", ish); + TGeoVolumeAssembly* shieldblock = new TGeoVolumeAssembly(name); + + TString conename_sh = Form("conesh_%d", ish); + + + Double_t dz = fShieldLz[ish] / 2.0; + Double_t globalZ1 = fShieldZin[ish]; + Double_t globalZ2 = fShieldZin[ish] + 2 * dz; + + + Double_t rmin1 = globalZ1 * fShield_AcceptanceTanMin[ish] + 2.0; + Double_t rmax1 = globalZ1 * fShield_AcceptanceTanMax[ish] - 0.0001; + Double_t rmin2 = globalZ2 * fShield_AcceptanceTanMin[ish] + 2.0; + Double_t rmax2 = globalZ2 * fShield_AcceptanceTanMax[ish] - 0.0001; + + infoFile << " " << ish << "\t\t" << globalZ1 << "\t " << globalZ2 << "\t" << rmin1 << "\t " << rmax1 << "\t " + << ShMaterial[ish] << endl; + + if (ish == 0) { + + TGeoCone* sh = new TGeoCone(conename_sh, dz, rmin1, rmax1, rmin2, rmax2); + TGeoVolume* shield = new TGeoVolume("shield", sh, Aluminium); + + shield->SetLineColor(7); + shield->SetTransparency(2); + TGeoTranslation* sh_trans = new TGeoTranslation("", 0., 0., globalZ1 + dz); + shieldblock->AddNode(shield, ish, sh_trans); + } + + if (ish == 1) { + TGeoCone* sh = new TGeoCone(conename_sh, dz, rmin1, rmax1, rmin2, rmax2); + TGeoVolume* shield = new TGeoVolume("shield", sh, lead); + + shield->SetLineColor(kMagenta); + shield->SetTransparency(2); + TGeoTranslation* sh_trans = new TGeoTranslation("", 0., 0., globalZ1 + dz); + shieldblock->AddNode(shield, ish, sh_trans); + } + + if (ish > 1) { + + + TGeoCone* sh = new TGeoCone(conename_sh, dz, rmin1, rmax1, rmin2, rmax2); + TGeoVolume* shield = new TGeoVolume("shield", sh, Aluminium); + + shield->SetLineColor(kBlack); + shield->SetTransparency(2); + + TGeoTranslation* sh_trans = new TGeoTranslation("", 0., 0., globalZ1 + dz); + shieldblock->AddNode(shield, ish, sh_trans); + } + + + return shieldblock; +} + +TGeoVolume* CreateShieldfifthabsorber(int ish) +{ + + TString BoxName1 = Form("Box1_%d", ish); + TString BoxName3 = Form("Box3_%d", ish); + TGeoMedium* Aluminium = gGeoMan->GetMedium(Al); + TString name = Form("shieldblock%d", ish); + TGeoVolumeAssembly* shieldblock = new TGeoVolumeAssembly(name); + TString tubename_sh = Form("tubesh_%d", ish); + TGeoBBox* box1 = new TGeoBBox(BoxName1, sh_x + 0.00001, sh_y + 0.00001, sh_z); + TGeoTube* sh = new TGeoTube(BoxName3, 0., 25.0, 50.0); + TString expression1 = BoxName1 + "-" + BoxName3; + TGeoCompositeShape* shSupport = new TGeoCompositeShape("supportShapeName", expression1); + TGeoVolume* abs2 = new TGeoVolume("shield", shSupport, Aluminium); + + Double_t dz = fShieldLz[ish] / 2.0; + + Double_t globalZ1 = fShieldZin[ish]; + + Double_t globalZ2 = fShieldZin[ish] + 2 * dz; + cout<<"-----------"<<globalZ1<<" "<< dz<<endl; + abs2->SetLineColor(kRed); + TGeoTranslation* sh_trans = new TGeoTranslation("", 0., 0., globalZ1 + dz); + shieldblock->AddNode(abs2, ish, sh_trans); + + return shieldblock; +} + +TGeoVolume* CreateAbsorbers(int i) +{ + + TGeoMedium* graphite = gGeoMan->GetMedium(LDcarbon); + TGeoMedium* iron = gGeoMan->GetMedium(I); + TGeoMedium* iron_fifth = gGeoMan->GetMedium(I_fifth); + TGeoMedium* concrete = gGeoMan->GetMedium(Concrete); + TGeoMedium* Aluminium = gGeoMan->GetMedium(Al); + + TString name = Form("absblock%d", i); + TGeoVolumeAssembly* absblock = new TGeoVolumeAssembly(name); + + TString pipename = Form("beampipe_%d", i); + TString conename = Form("cone_%d", i); + TString BoxName = Form("Box_%d", i); + TString BoxName1 = Form("Box1_%d", i); + TString BoxName2 = Form("Box2_%d", i); + TString supportShapeName = Form("Support_%d", i); + TString TrapName = Form("Trap_%d", i); + + Double_t dz = fAbsorberLz[i] / 2.0; + Double_t globalZ1 = fAbsorberZ1[i] + fMuchZ1; + Double_t globalPos = globalZ1 + dz; + Double_t globalZ2 = fAbsorberZ1[i] + 2 * dz + fMuchZ1; + + Double_t rmin1 = globalZ1 * fAcceptanceTanMin; + Double_t rmin2 = globalZ2 * fAcceptanceTanMin; + Double_t rmax1 = globalZ1 * fAcceptanceTanMax + safetyrad[i]; + Double_t rmax2 = globalZ2 * fAcceptanceTanMax + safetyrad[i]; // + + infoFile << " " << i + 1 << "\t\t" << globalPos << "\t\t" << 2 * dz << "\t\t" << AbsMaterial[i] << endl; + + // 1st part of 1st absorber LD Carbon + //dimensions are hardcoded + if (i == 0) { + // printf("absorber %d \n",i); + + TGeoTrd2* trap = new TGeoTrd2(TrapName, 70.0, 70.0, 46.0, 71.0, dz); + TGeoCone* tube = new TGeoCone(pipename, dz + 0.001, 0., rmin1, 0., rmin2); + TString expression = TrapName + "-" + pipename; + TGeoCompositeShape* shSupport = new TGeoCompositeShape(supportShapeName, expression); + TGeoVolume* abs0 = new TGeoVolume("absorber", shSupport, graphite); + abs0->SetLineColor(kRed); + abs0->SetTransparency(0); + TGeoTranslation* abs0_trans = new TGeoTranslation("", 0., 0., globalZ1 + dz); + absblock->AddNode(abs0, i, abs0_trans); + } + + + // 2rd part of 1st absorber box (LD Carbon) + if (i == 1) { + // printf("absorber %d \n",i); + TGeoBBox* box = new TGeoBBox(BoxName, 130.0, 125.0, dz); + TGeoCone* tube = new TGeoCone(pipename, dz + 0.001, 0., rmin1, 0., rmin2); + TString expression = BoxName + "-" + pipename; + TGeoCompositeShape* shSupport = new TGeoCompositeShape(supportShapeName, expression); + + TGeoVolume* abs1 = new TGeoVolume("absorber", shSupport, graphite); + abs1->SetLineColor(kRed); + abs1->SetTransparency(0); + TGeoTranslation* abs1_trans = new TGeoTranslation("", 0., 0., globalZ1 + dz); + absblock->AddNode(abs1, i, abs1_trans); + } + + // 3th part of 1st absorber box (Conc) + if (i == 2) { + // printf("absorber %d \n",i); + TGeoBBox* box = new TGeoBBox(BoxName, 130.0, 125.0, dz); + TGeoCone* tube = new TGeoCone(pipename, dz + 0.001, 0., rmin1, 0., rmin2); + TString expression = BoxName + "-" + pipename; + TGeoCompositeShape* shSupport = new TGeoCompositeShape(supportShapeName, expression); + + TGeoVolume* abs1 = new TGeoVolume("absorber", shSupport, concrete); + abs1->SetLineColor(kViolet); + abs1->SetTransparency(0); + TGeoTranslation* abs1_trans = new TGeoTranslation("", 0., 0., globalZ1 + dz); + absblock->AddNode(abs1, i, abs1_trans); + } + + + //rest of the absorbers + if (i > 2 && i < 6) { + TGeoBBox* box = new TGeoBBox(BoxName, rmax2, rmax2, dz); + TGeoCone* tube = new TGeoCone(pipename, dz + 0.001, 0., rmin1, 0., rmin2); + TString expression = BoxName + "-" + pipename; + TGeoCompositeShape* shSupport = new TGeoCompositeShape(supportShapeName, expression); + + TGeoVolume* abs2 = new TGeoVolume("absorber", shSupport, iron); + + abs2->SetLineColor(kBlue); + abs2->SetTransparency(2); + + + TGeoTranslation* abs_trans = new TGeoTranslation("", 0., 0., globalZ1 + dz); + absblock->AddNode(abs2, i, abs_trans); + } + + if (i == 6) { + printf("absorber %d \n", i); + TGeoBBox* box = new TGeoBBox(BoxName, open_x, open_y, open_z); + TGeoBBox* box1 = new TGeoBBox(BoxName1, 0.0000, 0.0000, 0.0000); + TGeoBBox* box2 = new TGeoBBox(BoxName2, block_x, block_y, block_z); + + TGeoVolume* abs1 = new TGeoVolume("absorber", box, iron_fifth); + + TGeoTranslation* abs1_trans = new TGeoTranslation("", 142.4, 0., globalZ1 + dz); + TGeoTranslation* abs1_trans1 = new TGeoTranslation("", -140.3, 0., globalZ1 + dz); + + TGeoVolume* abs3 = new TGeoVolume("absorber", box2, iron_fifth); + + abs1->SetLineColor(kBlue); + abs3->SetLineColor(kBlue); + + posfifthabsorber[0] = 0.0; + posfifthabsorber[1] = 0.0; + posfifthabsorber[2] = globalZ1 + dz; + + absblock->AddNode(abs1, i, abs1_trans); + absblock->AddNode(abs1, i, abs1_trans1); + + for (int i = 0; i < (noofblocks / 2); i++) { + posfifthabsorber[1] = posfifthabsorber[1] + sh_y + block_y + gap_al_iron; + TGeoTranslation* trans = new TGeoTranslation("", posfifthabsorber[0], posfifthabsorber[1], posfifthabsorber[2]); + TGeoTranslation* trans1 = + new TGeoTranslation("", posfifthabsorber[0], -(posfifthabsorber[1]), posfifthabsorber[2]); + TGeoHMatrix* pos_fifthabsorber = new TGeoHMatrix(""); + TGeoHMatrix* pos_fifthabsorber1 = new TGeoHMatrix(""); + (*pos_fifthabsorber) = (*trans); + (*pos_fifthabsorber1) = (*trans1); + absblock->AddNode(abs3, i, pos_fifthabsorber); + absblock->AddNode(abs3, i, pos_fifthabsorber1); + // cout<<"position"<<posfifthabsorber[1]<<endl; + posfifthabsorber[1] = posfifthabsorber[1] - sh_y + block_y - gap_al_iron + distance_between_blocks; + } + } + + return absblock; +} + +TGeoVolume* CreateStations(int ist) +{ + + TString stationName = Form("muchstation%02i", ist + 1); + + TGeoVolumeAssembly* station = new TGeoVolumeAssembly(stationName); //, shStation, air); + + TGeoVolume* gLayer[4]; + + for (int ii = 0; ii < 3; ii++) { // 3 Layers + + switch (ist) { + case 0: + case 1: gLayer[ii] = CreateGemLayers(ist, ii); break; + case 2: + case 3: gLayer[ii] = CreateRpcLayers(ist, ii); break; + } + + station->AddNode(gLayer[ii], ii); + } + + return station; +} + + +TGeoVolume* CreateGemLayers(int istn, int ily) +{ + + TString layerName = Form("muchstation%02ilayer%i", istn + 1, ily + 1); + TGeoVolumeAssembly* volayer = new TGeoVolumeAssembly(layerName); + + //GEM Parametrs + Double_t fSupportDz = 1.2; //1.2 cm Al (cooling + support) + Double_t fCopperDz = 0.0065; // 65 micron copper + Double_t fCopperSliceDz = 0.0005; //5 micron copper slices + Double_t fReadoutPlateDz = 0.3; //3mm G10 + Double_t fDriftPlateDz = 0.3; //3 mm G10 + Double_t fPassiveVolumeDz = 0.2; // 2 mm of Argon + Double_t fActiveVolumeDz = 0.3; //3mm argon + Double_t fKaptonDz = 0.005; //50 micron Kapton + Double_t fFrameDz = 0.2; // 2mm frame + + + Double_t stGlobalZ0 = fStationZ0[istn] + fMuchZ1; //z position of station center (midplane) [cm] + + + Double_t layerZ0 = (ily - (fNlayers[istn] - 1) / 2.) * fLayersDz[istn]; + Double_t layerGlobalZ0 = layerZ0 + stGlobalZ0; + + + //Active Gas distance from layer position + Double_t ModuleZ = fSupportDz / 2. + 2 * fCopperDz + fReadoutPlateDz + 3 * fPassiveVolumeDz + 6 * fCopperSliceDz + + 3 * fKaptonDz + fActiveVolumeDz / 2.; + + //ReadOut Plate distance from layer position + Double_t ReadOutZ = fSupportDz / 2. + fCopperDz + fReadoutPlateDz / 2.; + + //Copper distance from layer position + Double_t CooperIZ = fSupportDz / 2. + fCopperDz / 2.; + Double_t CooperIIZ = ReadOutZ + fReadoutPlateDz / 2. + fCopperDz / 2.; + Double_t CooperIIIZ = ModuleZ + fActiveVolumeDz / 2. + fCopperDz / 2.; + Double_t CooperIVZ = CooperIIIZ + fCopperDz + fDriftPlateDz; + + //Drift Plate distance from layer position + Double_t DriftZ = ModuleZ + fActiveVolumeDz / 2. + fCopperDz + fDriftPlateDz / 2.; + + //Passive Gas distance from layer position + Double_t PassivePassiveDz = fPassiveVolumeDz + 2 * fCopperSliceDz + fKaptonDz; + Double_t PassiveGasIZ = ReadOutZ + fReadoutPlateDz / 2. + fCopperDz + fPassiveVolumeDz / 2.; + Double_t PassiveGasIIZ = PassiveGasIZ + PassivePassiveDz; + Double_t PassiveGasIIIZ = PassiveGasIIZ + PassivePassiveDz; + + //Kapton distance from layer position + Double_t KaptonPassiveDz = fPassiveVolumeDz / 2. + fCopperSliceDz + fKaptonDz / 2.; + Double_t KaptonIZ = PassiveGasIZ + KaptonPassiveDz; + Double_t KaptonIIZ = PassiveGasIIZ + KaptonPassiveDz; + Double_t KaptonIIIZ = PassiveGasIIIZ + KaptonPassiveDz; + + //Copper Slice distance from layer position + Double_t PassiveCopperDz = fPassiveVolumeDz / 2. + fCopperSliceDz / 2.; + Double_t KaptonCopperDz = fKaptonDz + fCopperSliceDz; + Double_t CopperSilceIZ = PassiveGasIZ + PassiveCopperDz; + Double_t CopperSilceIIZ = CopperSilceIZ + KaptonCopperDz; + Double_t CopperSilceIIIZ = PassiveGasIIZ + PassiveCopperDz; + Double_t CopperSilceIVZ = CopperSilceIIIZ + KaptonCopperDz; + Double_t CopperSilceVZ = PassiveGasIIIZ + PassiveCopperDz; + Double_t CopperSilceVIZ = CopperSilceVZ + KaptonCopperDz; + + //Set Rmin & Rmax + Double_t stDz = ((fNlayers[istn] - 1) * fLayersDz[istn]) / 2. + CooperIVZ + fCopperDz / 2.; + + Double_t stGlobalZ2 = stGlobalZ0 + stDz; + Double_t stGlobalZ1 = stGlobalZ0 - stDz; + + Double_t rmin = stGlobalZ1 * fAcceptanceTanMin; + Double_t rmax = stGlobalZ2 * fAcceptanceTanMax; + + + // Module dimention calculation + Double_t phi0 = TMath::Pi() / fNSectorsPerLayer[istn]; // azimuthal half widh of each module + Double_t ymin = rmin + fSpacerR; + Double_t ymax = rmax; + + //define the dimensions of the trapezoidal module + Double_t dy = (ymax - ymin) / 2.; //y (length) + Double_t dx1 = ymin * TMath::Tan(phi0) + fOverlapR / TMath::Cos(phi0); // large x + Double_t dx2 = ymax * TMath::Tan(phi0) + fOverlapR / TMath::Cos(phi0); // small x + + //define the spacer dimensions + Double_t tg = (dx2 - dx1) / 2 / dy; + Double_t dd1 = fSpacerPhi * tg; + Double_t dd2 = fSpacerPhi * sqrt(1 + tg * tg); + Double_t sdx1 = dx1 + dd2 - dd1 - 0.1; // 0.1 cm to avoid overlaps + Double_t sdx2 = dx2 + dd2 + dd1; + Double_t sdy = dy + fSpacerR; + + + infoFile << " " << istn + 1 << "\t " << ily + 1 << "\t\t" << layerGlobalZ0 << "\t" << fNSectorsPerLayer[istn] + << "\t" << fActiveVolumeDz << endl; + + + // Aluminum Plate (Cooling + Support) + TString supportAlName = Form("shStation%02iSupportAl", istn + 1); + TGeoTube* shSupportAl = new TGeoTube(supportAlName, rmin, rmax, fSupportDz / 2.); + + TString supportName1 = Form("muchstation%02ilayer%isupportAl", istn + 1, ily + 1); + TGeoMedium* coolMat = gGeoMan->GetMedium(Al); + + TGeoVolume* voSupport1 = new TGeoVolume(supportName1, shSupportAl, coolMat); + voSupport1->SetLineColor(kCyan); + + TGeoTranslation* support_trans1 = new TGeoTranslation("supportName1", 0, 0, layerGlobalZ0); + volayer->AddNode(voSupport1, 0, support_trans1); + + + // Now start adding the GEM modules + for (Int_t iModule = 0; iModule < fNSectorsPerLayer[istn]; iModule++) { + + Double_t phi = 2 * phi0 * (iModule + 0.5); // add 0.5 to not overlap with y-axis for left-right layer separation + Bool_t isBack = iModule % 2; + Char_t cside = (isBack == 1) ? 'b' : 'f'; + Int_t iMod = iModule / 2; + + // correct the x, y positions + Double_t pos[21]; + pos[0] = -(ymin + dy) * sin(phi); + pos[1] = (ymin + dy) * cos(phi); + // different z positions for odd/even modules + pos[2] = (isBack ? 1 : -1) * ModuleZ + layerGlobalZ0; //Active volume & Frame + pos[3] = (isBack ? 1 : -1) * ReadOutZ + layerGlobalZ0; //Readout G10 + pos[4] = (isBack ? 1 : -1) * CooperIZ + layerGlobalZ0; //Copper I + pos[5] = (isBack ? 1 : -1) * CooperIIZ + layerGlobalZ0; //Copper II + pos[6] = (isBack ? 1 : -1) * CooperIIIZ + layerGlobalZ0; //Copper III + pos[7] = (isBack ? 1 : -1) * CooperIVZ + layerGlobalZ0; //Copper IV + pos[8] = (isBack ? 1 : -1) * DriftZ + layerGlobalZ0; //Drift G10 PassiveGasIZ + pos[9] = (isBack ? 1 : -1) * PassiveGasIZ + layerGlobalZ0; // Passive Gas I + pos[10] = (isBack ? 1 : -1) * PassiveGasIIZ + layerGlobalZ0; // Passive Gas II + pos[11] = (isBack ? 1 : -1) * PassiveGasIIIZ + layerGlobalZ0; // Passive Gas III + pos[12] = (isBack ? 1 : -1) * KaptonIZ + layerGlobalZ0; // Kapton I + pos[13] = (isBack ? 1 : -1) * KaptonIIZ + layerGlobalZ0; // Kapton II + pos[14] = (isBack ? 1 : -1) * KaptonIIIZ + layerGlobalZ0; // Kapton III + pos[15] = (isBack ? 1 : -1) * CopperSilceIZ + layerGlobalZ0; // Copper Slice I + pos[16] = (isBack ? 1 : -1) * CopperSilceIIZ + layerGlobalZ0; // Copper Slice II + pos[17] = (isBack ? 1 : -1) * CopperSilceIIIZ + layerGlobalZ0; // Copper Slice III + pos[18] = (isBack ? 1 : -1) * CopperSilceIVZ + layerGlobalZ0; // Copper Slice IV + pos[19] = (isBack ? 1 : -1) * CopperSilceVZ + layerGlobalZ0; // Copper Slice V + pos[20] = (isBack ? 1 : -1) * CopperSilceVIZ + layerGlobalZ0; // Copper Slice VI + + //define media + TGeoMedium* argon = gGeoMan->GetMedium(activemedium); // active medium + TGeoMedium* noryl = gGeoMan->GetMedium(spacermedium); // frame medium + TGeoMedium* g10plate = gGeoMan->GetMedium(g10); // G10 medium + TGeoMedium* copperplate = gGeoMan->GetMedium(copper); // copper + TGeoMedium* kapton = gGeoMan->GetMedium(Kapton); // Kapton + + + //Active Volume + TGeoTrap* shapeActive = new TGeoTrap(fActiveVolumeDz / 2., 0, 0, dy, dx1, dx2, 0, dy, dx1, dx2, 0); + shapeActive->SetName(Form("shStation%02iLayer%i%cModule%03iActiveNoHole", istn, ily, cside, iModule)); + + TString activeName = Form("muchstation%02ilayer%i%cactive%03igasArgon", istn + 1, ily + 1, cside, iMod + 1); + TGeoVolume* voActive = new TGeoVolume(activeName, shapeActive, argon); + voActive->SetLineColor(kGreen); + + //Frame + TGeoTrap* shapeFrame = new TGeoTrap(fFrameDz / 2., 0, 0, sdy, sdx1, sdx2, 0, sdy, sdx1, sdx2, 0); + shapeFrame->SetName(Form("shStation%02iLayer%i%cModule%03iFullFrameNoHole", istn, ily, cside, iModule)); + + TString expression = + Form("shStation%02iLayer%i%cModule%03iFullFrameNoHole-shStation%02iLayer%i%cModule%03iActiveNoHole", istn, ily, + cside, iModule, istn, ily, cside, iModule); + + TGeoCompositeShape* shFrame = new TGeoCompositeShape( + Form("shStation%02iLayer%i%cModule%03iFinalFrameNoHole", istn, ily, cside, iModule), expression); + + TString frameName = Form("muchstation%02ilayer%i%cframe%03i", istn + 1, ily + 1, cside, iModule + 1); + + TGeoVolume* voFrame = new TGeoVolume(frameName, shFrame, noryl); // add a name to the frame + voFrame->SetLineColor(kMagenta); + + //Readout Plate + TGeoTrap* shapeReadOut = new TGeoTrap(fReadoutPlateDz / 2.0, 0, 0, sdy, sdx1, sdx2, 0, sdy, sdx1, sdx2, 0); + shapeReadOut->SetName(Form("shStation%02iLayer%i%cModule%03iReadOut", istn, ily, cside, iModule)); + + TString ReadOutName = Form("muchstation%02ilayer%i%cReadOut%03i", istn + 1, ily + 1, cside, iModule + 1); + + TGeoVolume* voReadOut = new TGeoVolume(ReadOutName, shapeReadOut, g10plate); + voReadOut->SetLineColor(2); + + + //4 Copper 65 micron + TGeoTrap* shapeCopper[4]; + TString CopperName[4]; + TGeoVolume* voCopper[4]; + for (Int_t iCop = 0; iCop < 4; iCop++) { + shapeCopper[iCop] = new TGeoTrap(fCopperDz / 2.0, 0, 0, sdy, sdx1, sdx2, 0, sdy, sdx1, sdx2, 0); + shapeCopper[iCop]->SetName(Form("shStation%02iLayer%i%cModule%03iCopper", istn, ily, cside, iModule)); + + CopperName[iCop] = + Form("muchstation%02ilayer%i%cCopper%iModule%03i", istn + 1, ily + 1, cside, iCop + 1, iModule + 1); + + voCopper[iCop] = new TGeoVolume(CopperName[iCop], shapeCopper[iCop], copperplate); + voCopper[iCop]->SetLineColor(3); + } + + //Drift Plate + TGeoTrap* shapeDrift = new TGeoTrap(fDriftPlateDz / 2.0, 0, 0, sdy, sdx1, sdx2, 0, sdy, sdx1, sdx2, 0); + shapeDrift->SetName(Form("shStation%02iLayer%i%cModule%03iDrift", istn, ily, cside, iModule)); + + TString DriftName = Form("muchstation%02ilayer%i%cDrift%03i", istn + 1, ily + 1, cside, iModule + 1); + + TGeoVolume* voDrift = new TGeoVolume(DriftName, shapeDrift, g10plate); + voDrift->SetLineColor(2); + + //Passive Gas (2mm Ar) + TGeoTrap* shapePassiveGas[3]; + TString PassiveGasName[3]; + TGeoVolume* voPassiveGas[3]; + for (Int_t iPGas = 0; iPGas < 3; iPGas++) { + shapePassiveGas[iPGas] = new TGeoTrap(fPassiveVolumeDz / 2., 0, 0, dy, dx1, dx2, 0, dy, dx1, dx2, 0); + shapePassiveGas[iPGas]->SetName( + Form("shStation%02iLayer%i%cModule%03iPassiveGasNoHole", istn, ily, cside, iModule)); + + PassiveGasName[iPGas] = + Form("muchstation%02ilayer%i%cPassiveGas%iModule%03i", istn + 1, ily + 1, cside, iPGas, iModule + 1); + voPassiveGas[iPGas] = new TGeoVolume(PassiveGasName[iPGas], shapePassiveGas[iPGas], argon); + voPassiveGas[iPGas]->SetLineColor(kGreen); + } + + //kapton (50 micron) + TGeoTrap* shapeKapton[3]; + TString KaptonName[3]; + TGeoVolume* voKapton[3]; + for (Int_t iCop = 0; iCop < 3; iCop++) { + shapeKapton[iCop] = new TGeoTrap(fKaptonDz / 2.0, 0, 0, dy, dx1, dx2, 0, dy, dx1, dx2, 0); + shapeKapton[iCop]->SetName(Form("shStation%02iLayer%i%cModule%03iKapton", istn, ily, cside, iModule)); + + KaptonName[iCop] = + Form("muchstation%02ilayer%i%cKapton%iModule%03i", istn + 1, ily + 1, cside, iCop + 1, iModule + 1); + + voKapton[iCop] = new TGeoVolume(KaptonName[iCop], shapeKapton[iCop], kapton); + voKapton[iCop]->SetLineColor(4); + } + + //6 Copper Slice (5 micron) fCopperSliceDz + TGeoTrap* shapeCopperSlice[6]; + TString CopperSliceName[6]; + TGeoVolume* voCopperSlice[6]; + for (Int_t iCop = 0; iCop < 6; iCop++) { + shapeCopperSlice[iCop] = new TGeoTrap(fCopperSliceDz / 2.0, 0, 0, dy, dx1, dx2, 0, dy, dx1, dx2, 0); + shapeCopperSlice[iCop]->SetName(Form("shStation%02iLayer%i%cModule%03iCopperSlice", istn, ily, cside, iModule)); + + CopperSliceName[iCop] = + Form("muchstation%02ilayer%i%cCopperSlice%iModule%03i", istn + 1, ily + 1, cside, iCop + 1, iModule + 1); + + voCopperSlice[iCop] = new TGeoVolume(CopperSliceName[iCop], shapeCopperSlice[iCop], copperplate); + voCopperSlice[iCop]->SetLineColor(3); + } + + + // Calculate the phi angle of the sector where it has to be placed + Double_t angle = 180. / TMath::Pi() * phi; // convert angle phi from rad to deg + + + TGeoRotation* r2 = new TGeoRotation("r2"); + //rotate in the vertical plane (per to z axis) with angle + r2->RotateZ(angle); + + + TGeoTranslation* trans[20]; + TGeoHMatrix* incline_mod[20]; + + for (Int_t i = 0; i < 19; i++) { + trans[i] = new TGeoTranslation("", pos[0], pos[1], pos[i + 2]); + incline_mod[i] = new TGeoHMatrix(""); + (*incline_mod[i]) = (*trans[i]) * (*r2); + + } + volayer->AddNode(voActive, iModule, incline_mod[0]); // add active volume + // volayer->AddNode(voFrame, iModule, incline_mod[0]); // add frame // Frame removed from Active gas + volayer->AddNode(voReadOut, iModule, incline_mod[1]); // add Read Out + for (int iNode = 0; iNode < 4; iNode++) + volayer->AddNode(voCopper[iNode], iModule, incline_mod[iNode + 2]); //add Copper + volayer->AddNode(voDrift, iModule, incline_mod[6]); // add Drift Out + for (int iNode = 0; iNode < 3; iNode++) + volayer->AddNode(voPassiveGas[iNode], iModule, incline_mod[iNode + 7]); //add Passive Gas + for (int iNode = 0; iNode < 3; iNode++) + volayer->AddNode(voKapton[iNode], iModule, incline_mod[iNode + 10]); //add Kapton + for (int iNode = 0; iNode < 6; iNode++) + volayer->AddNode(voCopperSlice[iNode], iModule, incline_mod[iNode + 13]); //add CopperSlices + } + + return volayer; +} + + +TGeoVolume* CreateRpcLayers(int istn, int ily) +{ + + TString layerName = Form("muchstation%02ilayer%i", istn + 1, ily + 1); + TGeoVolumeAssembly* volayer = new TGeoVolumeAssembly(layerName); + + //RPC Parametrs + Double_t fActiveVolumeDz = 0.2; //2mm RPC + Double_t fSupportDz = 0.2; //2 mm Al (cooling + support) + Double_t fRpcGlassDz = 0.2; // 2mm glass + Double_t fCopperDz = 0.0035; // 35 micron copper + Double_t fReadoutPlateDz = 0.3; //3mm G10 + Double_t fDriftPlateDz = 0.3; //3 mm G10 + Double_t fFrameDz = 1.0; // 1cm Al frame + + + Double_t stGlobalZ0 = fStationZ0[istn] + fMuchZ1; //z position of station center (midplane) [cm] + + Double_t layerZ0 = (ily - (fNlayers[istn] - 1) / 2.) * fLayersDz[istn]; + Double_t layerGlobalZ0 = layerZ0 + stGlobalZ0; + + + //Active Gas distance from layer position + Double_t ModuleZ = fSupportDz / 2. + fCopperDz + fReadoutPlateDz + fRpcGlassDz + fActiveVolumeDz / 2.; + + //RPC Glass + Double_t GlassDz = fRpcGlassDz / 2. + fActiveVolumeDz / 2.; + Double_t GlassIZ = ModuleZ - GlassDz; + Double_t GlassIIZ = ModuleZ + GlassDz; + + //ReadOut Plate distance from layer position + Double_t ReadOutZ = fSupportDz / 2. + fCopperDz + fReadoutPlateDz / 2.; + + //Drift Plate distance from layer position + Double_t DriftZ = GlassIIZ + fRpcGlassDz / 2. + fDriftPlateDz / 2.; + + //Copper distance from layer position + Double_t CooperIZ = fSupportDz / 2. + fCopperDz / 2.; + Double_t CooperIIZ = DriftZ + fDriftPlateDz / 2. + fCopperDz / 2.; + + + //Set Rmin & Rmax + Double_t stDz = ((fNlayers[istn] - 1) * fLayersDz[istn]) / 2. + CooperIIZ + fCopperDz / 2.; + + Double_t stGlobalZ2 = stGlobalZ0 + stDz; + Double_t stGlobalZ1 = stGlobalZ0 - stDz; + + Double_t rmin = stGlobalZ1 * fAcceptanceTanMin; + Double_t rmax = stGlobalZ2 * fAcceptanceTanMax; + + + // Module dimention calculation + Double_t phi0 = TMath::Pi() / fNSectorsPerLayer[istn]; // azimuthal half widh of each module + Double_t ymin = rmin + fSpacerR; + Double_t ymax = rmax; + + //define the dimensions of the trapezoidal module + Double_t dy = (ymax - ymin) / 2.; //y (length) + Double_t dx1 = ymin * TMath::Tan(phi0) + fOverlapR / TMath::Cos(phi0); // large x + Double_t dx2 = ymax * TMath::Tan(phi0) + fOverlapR / TMath::Cos(phi0); // small x + + //define the spacer dimensions + Double_t tg = (dx2 - dx1) / 2 / dy; + Double_t dd1 = fSpacerPhi * tg; + Double_t dd2 = fSpacerPhi * sqrt(1 + tg * tg); + Double_t sdx1 = dx1 + dd2 - dd1 - 0.1; // 0.1 cm to avoid overlaps + Double_t sdx2 = dx2 + dd2 + dd1; + Double_t sdy = dy + fSpacerR; + + + infoFile << " " << istn + 1 << "\t " << ily + 1 << "\t\t" << layerGlobalZ0 << "\t" << fNSectorsPerLayer[istn] + << "\t" << fActiveVolumeDz << endl; + + + // Aluminum Plate (Cooling + Support) + TString supportAlName = Form("shStation%02iSupportAl", istn + 1); + TGeoTube* shSupportAl = new TGeoTube(supportAlName, rmin, rmax, fSupportDz / 2.); + + TString supportName1 = Form("muchstation%02ilayer%isupportAl", istn + 1, ily + 1); + TGeoMedium* coolMat = gGeoMan->GetMedium(Al); + + TGeoVolume* voSupport1 = new TGeoVolume(supportName1, shSupportAl, coolMat); + voSupport1->SetLineColor(kCyan); + + TGeoTranslation* support_trans1 = new TGeoTranslation("supportName1", 0, 0, layerGlobalZ0); + volayer->AddNode(voSupport1, 0, support_trans1); + + // Now start adding the GEM modules + for (Int_t iModule = 0; iModule < fNSectorsPerLayer[istn]; iModule++) { + + Double_t phi = 2 * phi0 * (iModule + 0.5); // add 0.5 to not overlap with y-axis for left-right layer separation + Bool_t isBack = iModule % 2; + Char_t cside = (isBack == 1) ? 'b' : 'f'; + Int_t iMod = iModule / 2; + // correct the x, y positions + Double_t pos[9]; + pos[0] = -(ymin + dy) * sin(phi); + pos[1] = (ymin + dy) * cos(phi); + // different z positions for odd/even modules + pos[2] = (isBack ? 1 : -1) * ModuleZ + layerGlobalZ0; //Active volume & Frame + pos[3] = (isBack ? 1 : -1) * GlassIZ + layerGlobalZ0; //Glass I + pos[4] = (isBack ? 1 : -1) * GlassIIZ + layerGlobalZ0; //Glass II + pos[5] = (isBack ? 1 : -1) * ReadOutZ + layerGlobalZ0; //ReadOut Plate + pos[6] = (isBack ? 1 : -1) * DriftZ + layerGlobalZ0; //Drift Plate + pos[7] = (isBack ? 1 : -1) * CooperIZ + layerGlobalZ0; //Copper I Plate + pos[8] = (isBack ? 1 : -1) * CooperIIZ + layerGlobalZ0; //Copper II Plate + + + TGeoMedium* RPCgasmedium = gGeoMan->GetMedium(RPCm); // RPC Gas + TGeoMedium* RPCglassmat = gGeoMan->GetMedium(RPCg); // RPC Glass + TGeoMedium* g10plate = gGeoMan->GetMedium(g10); // G10 medium + TGeoMedium* copperplate = gGeoMan->GetMedium(copper); // copper + TGeoMedium* AlFrame = gGeoMan->GetMedium(Al); // spacer medium + + + //Active Volume + TGeoTrap* shapeActive = new TGeoTrap(fActiveVolumeDz / 2., 0, 0, dy, dx1, dx2, 0, dy, dx1, dx2, 0); + shapeActive->SetName(Form("shStation%02iLayer%i%cModule%03iActiveNoHole", istn, ily, cside, iModule)); + + TString activeName = Form("muchstation%02ilayer%i%cactive%03irpcgas", istn + 1, ily + 1, cside, iMod + 1); + TGeoVolume* voActive = new TGeoVolume(activeName, shapeActive, RPCgasmedium); + voActive->SetLineColor(kGreen); + + // RPC Glass + TGeoTrap* shapeGlass[2]; + TString GlassName[2]; + TGeoVolume* voGlass[2]; + for (Int_t iGlass = 0; iGlass < 2; iGlass++) { + shapeGlass[iGlass] = new TGeoTrap(fRpcGlassDz / 2., 0, 0, dy, dx1, dx2, 0, dy, dx1, dx2, 0); + shapeGlass[iGlass]->SetName(Form("shStation%02iLayer%i%cModule%03iNoHoleGlass", istn, ily, cside, iModule)); + GlassName[iGlass] = + Form("muchstation%02ilayer%i%crpcglass%imodule%03i", istn + 1, ily + 1, cside, iGlass + 1, iModule + 1); + voGlass[iGlass] = new TGeoVolume(GlassName[iGlass], shapeGlass[iGlass], RPCglassmat); + voGlass[iGlass]->SetLineColor(kRed); + } + + //Readout Plate + TGeoTrap* shapeReadOut = new TGeoTrap(fReadoutPlateDz / 2.0, 0, 0, dy, dx1, dx2, 0, dy, dx1, dx2, 0); + shapeReadOut->SetName(Form("shStation%02iLayer%i%cModule%03iReadOut", istn, ily, cside, iModule)); + + TString ReadOutName = Form("muchstation%02ilayer%i%cReadOut%03i", istn + 1, ily + 1, cside, iModule + 1); + + TGeoVolume* voReadOut = new TGeoVolume(ReadOutName, shapeReadOut, g10plate); + voReadOut->SetLineColor(2); + + //Drift Plate + TGeoTrap* shapeDrift = new TGeoTrap(fDriftPlateDz / 2.0, 0, 0, dy, dx1, dx2, 0, dy, dx1, dx2, 0); + shapeDrift->SetName(Form("shStation%02iLayer%i%cModule%03iDrift", istn, ily, cside, iModule)); + + TString DriftName = Form("muchstation%02ilayer%i%cDrift%03i", istn + 1, ily + 1, cside, iModule + 1); + + TGeoVolume* voDrift = new TGeoVolume(DriftName, shapeDrift, g10plate); + voDrift->SetLineColor(2); + + + //2 Copper 35 micron + TGeoTrap* shapeCopper[2]; + TString CopperName[2]; + TGeoVolume* voCopper[2]; + for (Int_t iCop = 0; iCop < 2; iCop++) { + shapeCopper[iCop] = new TGeoTrap(fCopperDz / 2.0, 0, 0, dy, dx1, dx2, 0, dy, dx1, dx2, 0); + shapeCopper[iCop]->SetName(Form("shStation%02iLayer%i%cModule%03iCopper", istn, ily, cside, iModule)); + + CopperName[iCop] = + Form("muchstation%02ilayer%i%cCopper%iModule%03i", istn + 1, ily + 1, cside, iCop + 1, iModule + 1); + + voCopper[iCop] = new TGeoVolume(CopperName[iCop], shapeCopper[iCop], copperplate); + voCopper[iCop]->SetLineColor(kRed); + } + + + //Frame (1 cm Al) + + TGeoTrap* shape = new TGeoTrap(fFrameDz / 2., 0, 0, dy, dx1, dx2, 0, dy, dx1, dx2, 0); + shape->SetName(Form("shStation%02iLayer%i%cModule%03iFrameNoHole", istn, ily, cside, iModule)); + + TGeoTrap* shapeFrame = new TGeoTrap(fFrameDz / 2., 0, 0, sdy, sdx1, sdx2, 0, sdy, sdx1, sdx2, 0); + shapeFrame->SetName(Form("shStation%02iLayer%i%cModule%03iFullFrameNoHole", istn, ily, cside, iModule)); + + TString expression = + Form("shStation%02iLayer%i%cModule%03iFullFrameNoHole-shStation%02iLayer%i%cModule%03iFrameNoHole", istn, ily, + cside, iModule, istn, ily, cside, iModule); + + TGeoCompositeShape* shFrame = new TGeoCompositeShape( + Form("shStation%02iLayer%i%cModule%03iFinalFrameNoHole", istn, ily, cside, iModule), expression); + + TString frameName = Form("muchstation%02ilayer%i%cframe%03i", istn + 1, ily + 1, cside, iModule + 1); + + TGeoVolume* voFrame = new TGeoVolume(frameName, shFrame, AlFrame); // add a name to the frame + voFrame->SetLineColor(kMagenta); + + + // Calculate the phi angle of the sector where it has to be placed + Double_t angle = 180. / TMath::Pi() * phi; // convert angle phi from rad to deg + + + TGeoRotation* r2 = new TGeoRotation("r2"); + //rotate in the vertical plane (per to z axis) with angle + r2->RotateZ(angle); + + + TGeoTranslation* trans[8]; + TGeoHMatrix* incline_mod[8]; + + for (int i = 0; i < 7; i++) { + trans[i] = new TGeoTranslation("", pos[0], pos[1], pos[i + 2]); + + incline_mod[i] = new TGeoHMatrix(""); + (*incline_mod[i]) = (*trans[i]) * (*r2); + cout<<pos[i + 2]<<endl; + } + + volayer->AddNode(voActive, iModule, incline_mod[0]); // add active volume + // volayer->AddNode(voFrame, iModule, incline_mod[0]); // add frame + for (int iNode = 0; iNode < 2; iNode++) + volayer->AddNode(voGlass[iNode], iModule, incline_mod[iNode + 1]); //add Glass + volayer->AddNode(voReadOut, iModule, incline_mod[3]); // add ReadOut Plate + volayer->AddNode(voDrift, iModule, incline_mod[4]); // add Drift Plate + for (int iNode = 0; iNode < 2; iNode++) + volayer->AddNode(voCopper[iNode], iModule, incline_mod[iNode + 5]); //add Copper + } + return volayer; +} diff --git a/much/much_v22a_jpsi.geo.info b/much/much_v22a_jpsi.geo.info new file mode 100644 index 0000000000000000000000000000000000000000..4394e68adecf68e2086b9a463b2824b06fd65667 --- /dev/null +++ b/much/much_v22a_jpsi.geo.info @@ -0,0 +1,61 @@ +MUCH geometry created with create_MUCH_geometry_v21a_lmvm.C + +Global Variables: +MuchCave Zin position = 125 cm +Acceptance tangent min = 0.1 +Acceptance tangent max = 0.466 + + Absorbers + ----------- +Total No. of Absorbers: 5 +First abosrber is divided into two halves. +First half inserted inside the Dipole Magnet. +Second half is made of Low Density Graphite + Concrete. +Total No. of Pieces: 7 + +AbsPieces Position[cm] Thickness[cm] Material +-------------------------------------------------------------- + 1 133 16 LD Graphite + 2 147 12 LD Graphite + 3 168 30 Concrete + 4 225 20 Iron + 5 275 20 Iron + 6 330 30 Iron + 7 427 100 Iron_fifth + + Shielding + ----------- +No. of Shields: 6 +Inside the Abs I, Shielding divided into two parts. + +Shield No. Z_In[cm] Z_Out[cm] R_In[cm] R_Out[cm] Material +-------------------------------------------------------------- + 0 125 153 7.375 12.4999 Al + 1 153 183 8.579 15.2999 Pb + 2 215 235 12.965 21.4999 Al + 3 265 285 15.515 26.4999 Al + 4 315 345 18.065 31.4999 Al + 5 377 477 25.00 25.00 Al + + Stations + ---------- +No. of Stations: 4 +First two stations (1,2) are made up of GEM and last two stations (3,4) are made up of RPC. +Passive material implemented in GEM modules. Ar:CO2 (70:30) is used as active gas. +12 mm thick Al plates are used for support and cooling in the GEM modules. +2 mm thick Aluminum plates are used for support in the RPC modules behind the active area. 10 mm thick Aluminium at the boundaries as the frame. +Drift and read-out PCBs (copper coated G10 plates) inserted for realistic material budget for both GEM and RPC modules. +#Station #Layers Z[cm] #Sectors ActiveLz[cm] +-------------------------------------------------------------- + 1 1 190 16 0.3 + 1 2 200 16 0.3 + 1 3 210 16 0.3 + 2 1 240 20 0.3 + 2 2 250 20 0.3 + 2 3 260 20 0.3 + 3 1 290 18 0.2 + 3 2 300 18 0.2 + 3 3 310 18 0.2 + 4 1 350 20 0.2 + 4 2 360 20 0.2 + 4 3 370 20 0.2 diff --git a/much/much_v22a_jpsi.geo.root b/much/much_v22a_jpsi.geo.root new file mode 100644 index 0000000000000000000000000000000000000000..c2b471e390367b1fc73ef73ae054635bd03fcae9 Binary files /dev/null and b/much/much_v22a_jpsi.geo.root differ diff --git a/setup/setup_sis100_muon_jpsi_MAR23.C b/setup/setup_sis100_muon_jpsi_MAR23.C index 4809a6a4109ce3e4e65a2bdb1448042e5bbe7ef4..0eabacd4a8fb914212f24f1f2f2918b3164de8df 100644 --- a/setup/setup_sis100_muon_jpsi_MAR23.C +++ b/setup/setup_sis100_muon_jpsi_MAR23.C @@ -41,9 +41,9 @@ void setup_sis100_muon_jpsi_MAR23() // ----- Geometry Tags -------------------------------------------------- TString magnetGeoTag = "v22b"; - TString pipeGeoTag = "v21d"; + TString pipeGeoTag = "v21d:v21i"; TString stsGeoTag = "v22c"; - TString muchGeoTag = "v21c_sis100_1m_jpsi"; + TString muchGeoTag = "v22a_jpsi"; TString trdGeoTag = "v20c_1m"; TString tofGeoTag = "v21a_1m"; TString platGeoTag = "v22b";