// Illustrates how to find peaks in histograms. // This script generates a random number of gaussian peaks // on top of a linear background. // The position of the peaks is found via TSpectrum and injected // as initial values of parameters to make a global fit. // The background is computed and drawn on top of the original histogram. // // To execute this example, do // root > .x peaks.C (generate 10 peaks by default) // root > .x peaks.C++ (use the compiler) // root > .x peaks.C++(30) (generates 30 peaks) // // To execute only the first part of the script (without fitting) // specify a negative value for the number of peaks, eg // root > .x peaks.C(-20) // //Author: Rene Brun #include "TCanvas.h" #include "TF1.h" #include "TH1.h" #include "TMath.h" #include "TRandom.h" #include "TSpectrum.h" #include "TVirtualFitter.h" Int_t npeaks = 30; Double_t fpeaks(Double_t* x, Double_t* par) { Double_t result = par[0] + par[1] * x[0]; for (Int_t p = 0; p < npeaks; p++) { Double_t norm = par[3 * p + 2]; Double_t mean = par[3 * p + 3]; Double_t sigma = par[3 * p + 4]; result += norm * TMath::Gaus(x[0], mean, sigma); } return result; } void TutorialFindPeaks(Int_t np = 10) { npeaks = TMath::Abs(np); TH1F* h = new TH1F("h", "test", 500, 0, 1000); //generate n peaks at random Double_t par[3000]; par[0] = 0.8; par[1] = -0.6 / 1000; Int_t p; for (p = 0; p < npeaks; p++) { par[3 * p + 2] = 1; par[3 * p + 3] = 10 + gRandom->Rndm() * 980; par[3 * p + 4] = 3 + 2 * gRandom->Rndm(); } TF1* f = new TF1("f", fpeaks, 0, 1000, 2 + 3 * npeaks); f->SetNpx(1000); f->SetParameters(par); TCanvas* c1 = new TCanvas("c1", "c1", 10, 10, 1000, 900); c1->Divide(1, 2); c1->cd(1); h->FillRandom("f", 200000); h->Draw(); TH1F* h2 = (TH1F*) h->Clone("h2"); //Use TSpectrum to find the peak candidates TSpectrum* s = new TSpectrum(2 * npeaks); Int_t nfound = s->Search(h, 2, "", 0.10); printf("Found %d candidate peaks to fit\n", nfound); //Estimate background using TSpectrum::Background TH1* hb = s->Background(h, 20, "same"); if (hb) c1->Update(); if (np < 0) return; //estimate linear background using a fitting method c1->cd(2); TF1* fline = new TF1("fline", "pol1", 0, 1000); h->Fit("fline", "qn"); //Loop on all found peaks. Eliminate peaks at the background level par[0] = fline->GetParameter(0); par[1] = fline->GetParameter(1); npeaks = 0; Double_t* xpeaks = s->GetPositionX(); for (p = 0; p < nfound; p++) { Double_t xp = xpeaks[p]; Int_t bin = h->GetXaxis()->FindBin(xp); Double_t yp = h->GetBinContent(bin); if (yp - TMath::Sqrt(yp) < fline->Eval(xp)) continue; par[3 * npeaks + 2] = yp; par[3 * npeaks + 3] = xp; par[3 * npeaks + 4] = 3; npeaks++; } printf("Found %d useful peaks to fit\n", npeaks); printf("Now fitting: Be patient\n"); TF1* fit = new TF1("fit", fpeaks, 0, 1000, 2 + 3 * npeaks); //we may have more than the default 25 parameters TVirtualFitter::Fitter(h2, 10 + 3 * npeaks); fit->SetParameters(par); fit->SetNpx(1000); h2->Fit("fit"); }