// -------------------------------------------------------------------------- // // Macro for standard transport simulation using UrQMD input and GEANT3 // Standard CBM setup with MVD, STS, RICH, TRD, TOF and ECAL // // V. Friese 22/02/2007 // // 2017-08-15 - DE - make test setup for SPS 2017 // 2017-03-30 - DE - add mcbm_sim.C to CTests // 2014-06-30 - DE - available setups from geometry/setup: // 2014-06-30 - DE - sis100_hadron // 2014-06-30 - DE - sis100_electron // 2014-06-30 - DE - sis100_muon // 2014-06-30 - DE - sis300_electron // 2014-06-30 - DE - sis300_muon // // -------------------------------------------------------------------------- void sps17_mc(Int_t nEvents = 2, const char* setupName = "sps17", const char* inputFile = "") { // ======================================================================== // Adjust this part according to your requirements // available input files TString defaultInputFile = "/input/urqmd.agag.1.65gev.centr.00001.root"; // TString defaultInputFile = "/input/urqmd.agag.1.65gev.mbias.00001.root"; // TString defaultInputFile = "/input/urqmd.auau.1.24gev.mbias.00001.root"; // TString defaultInputFile = "/input/urqmd.niau.1.93gev.centr.00001.root"; // TString defaultInputFile = "/input/urqmd.niau.1.93gev.mbias.00001.root"; // TString defaultInputFile = "/input/urqmd.nini.1.93gev.centr.00001.root"; // TString defaultInputFile = "/input/urqmd.nini.1.93gev.mbias.00001.root"; // TString defaultInputFile = "/input/urqmd.pau.4.5gev.mbias.00001.root"; // ----- Environment -------------------------------------------------- TString myName = "sps17_mc"; // this macro's name for screen output TString srcDir = gSystem->Getenv("VMCWORKDIR"); // top source directory // ------------------------------------------------------------------------ // ----- In- and output file names ------------------------------------ TString inFile = ""; // give here or as argument; otherwise default is taken TString outDir = "data/"; TString outFile = outDir + setupName + "_test.mc.root"; TString parFile = outDir + setupName + "_params.root"; TString geoFile = outDir + setupName + "_geofile_full.root"; // ------------------------------------------------------------------------ // --- Logger settings ---------------------------------------------------- TString logLevel = "INFO"; TString logVerbosity = "LOW"; // ------------------------------------------------------------------------ // --- Define the target geometry ----------------------------------------- // // The target is not part of the setup, since one and the same setup can // and will be used with different targets. // The target is constructed as a tube in z direction with the specified // diameter (in x and y) and thickness (in z). It will be placed at the // specified position as daughter volume of the volume present there. It is // in the responsibility of the user that no overlaps or extrusions are // created by the placement of the target. // TString targetElement = "Gold"; Double_t targetThickness = 0.1; // full thickness in cm Double_t targetDiameter = 0.5; // diameter in cm Double_t targetPosX = 0.; // target x position in global c.s. [cm] Double_t targetPosY = 0.; // target y position in global c.s. [cm] Double_t targetPosZ = 0.; // target z position in global c.s. [cm] Double_t targetRotY = 0.; // target rotation angle around the y axis [deg] Double_t beamRotY = 25.; // with 8 degree wrt R3B beam - beam rotation angle around the y axis [deg] // Double_t beamRotY = -20.; // with 15 degree magnet - beam rotation angle around the y axis [deg] // ------------------------------------------------------------------------ // --- Define the creation of the primary vertex ------------------------ // // By default, the primary vertex point is sampled from a Gaussian // distribution in both x and y with the specified beam profile width, // and from a flat distribution in z over the extension of the target. // By setting the respective flags to kFALSE, the primary vertex will always // at the (0., 0.) in x and y and in the z centre of the target, respectively. // Bool_t smearVertexXY = kTRUE; Bool_t smearVertexZ = kTRUE; Double_t beamWidthX = 0.1; // Gaussian sigma of the beam profile in x [cm] Double_t beamWidthY = 0.1; // Gaussian sigma of the beam profile in y [cm] // ------------------------------------------------------------------------ // In general, the following parts need not be touched // ======================================================================== // ----- Timer -------------------------------------------------------- TStopwatch timer; timer.Start(); // ------------------------------------------------------------------------ // ---- Debug option ------------------------------------------------- gDebug = 0; // ------------------------------------------------------------------------ // ----- Remove old CTest runtime dependency file --------------------- TString depFile = Remove_CTest_Dependency_File(outDir, "sps17_mc", setupName); // ------------------------------------------------------------------------ // ----- Create simulation run ---------------------------------------- FairRunSim* run = new FairRunSim(); run->SetName("TGeant3"); // Transport engine run->SetOutputFile(outFile); // Output file run->SetGenerateRunInfo(kTRUE); // Create FairRunInfo file // ------------------------------------------------------------------------ // ----- Logger settings ---------------------------------------------- FairLogger::GetLogger()->SetLogScreenLevel(logLevel.Data()); FairLogger::GetLogger()->SetLogVerbosityLevel(logVerbosity.Data()); // ------------------------------------------------------------------------ // ----- Load the geometry setup ------------------------------------- std::cout << std::endl; TString setupFile = srcDir + "/geometry/setup/setup_" + setupName + ".C"; TString setupFunct = "setup_"; setupFunct = setupFunct + setupName + "()"; std::cout << "-I- " << myName << ": Loading macro " << setupFile << std::endl; gROOT->LoadMacro(setupFile); gROOT->ProcessLine(setupFunct); // ------------------------------------------------------------------------ // ----- Input file --------------------------------------------------- std::cout << std::endl; TString defaultInput = srcDir + defaultInputFile; if (inFile.IsNull()) { // Not defined in the macro explicitly if (strcmp(inputFile, "") == 0) { // not given as argument to the macro inFile = defaultInput; } else inFile = inputFile; } std::cout << "-I- " << myName << ": Using input file " << inFile << std::endl; // ------------------------------------------------------------------------ // ----- Create media ------------------------------------------------- std::cout << std::endl; std::cout << "-I- " << myName << ": Setting media file" << std::endl; run->SetMaterials("media.geo"); // Materials // ------------------------------------------------------------------------ // ----- Create and register modules ---------------------------------- std::cout << std::endl; TString macroName = gSystem->Getenv("VMCWORKDIR"); macroName += "/macro/mcbm/modules/registerSetup.C"; // macroName += "/macro/run/modules/registerSetup.C"; std::cout << "Loading macro " << macroName << std::endl; gROOT->LoadMacro(macroName); gROOT->ProcessLine("registerSetup()"); // ------------------------------------------------------------------------ // ----- Create and register the target ------------------------------- std::cout << std::endl; std::cout << "-I- " << myName << ": Registering target" << std::endl; CbmTarget* target = new CbmTarget(targetElement.Data(), targetThickness, targetDiameter); target->SetPosition(targetPosX, targetPosY, targetPosZ); target->SetRotation(targetRotY); target->Print(); run->AddModule(target); // ------------------------------------------------------------------------ // ----- Create magnetic field ---------------------------------------- std::cout << std::endl; std::cout << "-I- " << myName << ": Registering magnetic field" << std::endl; CbmFieldMap* magField = CbmSetup::Instance()->CreateFieldMap(); if (!magField) { std::cout << "-E- run_sim_new: No valid field!"; return; } run->SetField(magField); // ------------------------------------------------------------------------ // ----- Create PrimaryGenerator -------------------------------------- FairPrimaryGenerator* primGen = new FairPrimaryGenerator(); // --- Uniform distribution of event plane angle primGen->SetEventPlane(0., 2. * TMath::Pi()); // --- Get target parameters Double_t tX = 0.; Double_t tY = 0.; Double_t tZ = 0.; Double_t tDz = 0.; if (target) { target->GetPosition(tX, tY, tZ); tDz = target->GetThickness(); } primGen->SetTarget(tZ, tDz); primGen->SetBeam(0., 0., beamWidthX, beamWidthY); primGen->SmearGausVertexXY(smearVertexXY); primGen->SmearVertexZ(smearVertexZ); // // TODO: Currently, there is no guaranteed consistency of the beam profile // and the transversal target dimension, i.e., that the sampled primary // vertex falls into the target volume. This would require changes // in the FairPrimaryGenerator class. // ------------------------------------------------------------------------ // Use the CbmUnigenGenrator for the input CbmUnigenGenerator* uniGen = new CbmUnigenGenerator(inFile); uniGen->SetEventPlane(0., 360.); primGen->AddGenerator(uniGen); primGen->SetBeamAngle( beamRotY * TMath::Pi() / 180., 0, 0, 0); // set direction of beam run->SetGenerator(primGen); // ------------------------------------------------------------------------ // // ----- Create Electron gun as alternative ----------------------------- // FairPrimaryGenerator* primGen = new FairPrimaryGenerator(); // // Use the FairBoxGenerator which generates a soingle electron // FairBoxGenerator *eminus = new FairBoxGenerator(); // eminus->SetPDGType(11); // eminus->SetMultiplicity(1000); // // eminus->SetBoxXYZ(32.,-32.,32.,-32.,0.); // shoot at corner of diagonal modules // // eminus->SetBoxXYZ(0., 0., 0., 0., 0.); // shoot at corner of diagonal modules // // eminus->SetBoxXYZ(57.,-57., 0., 0.,0.); // shoot at corner of diagonal modules // // eminus->SetBoxXYZ(-57.,-57., 57., 57.,0.); // shoot at corner of diagonal modules // eminus->SetBoxXYZ(-180.,-15.,-150.,15.,0.); // shoot at corner of diagonal modules // eminus->SetPRange(2.,2.); // eminus->SetPhiRange(0.,360.); // eminus->SetThetaRange(0.,0.); // primGen->AddGenerator(eminus); // // // primGen->SetBeamAngle(30*TMath::Pi()/180.,0,0,0); // set direction of beam to 30 degrees // // fRun->SetGenerator(primGen); // // ------------------------------------------------------------------------ // Visualisation of trajectories (TGeoManager Only) // Switch this on if you want to visualise tracks in the event display. // This is normally switch off, because of the huge files created // when it is switched on. run->SetStoreTraj(kTRUE); // ----- Run initialisation ------------------------------------------- std::cout << std::endl; std::cout << "-I- " << myName << ": Initialise run" << std::endl; run->Init(); // ------------------------------------------------------------------------ // // Set cuts for storing the trajectories. // // Switch this on only if trajectories are stored. // // Choose this cuts according to your needs, but be aware // // that the file size of the output file depends on these cuts // // FairTrajFilter* trajFilter = FairTrajFilter::Instance(); // if ( trajFilter ) { // trajFilter->SetStepSizeCut(0.01); // 1 cm // trajFilter->SetVertexCut(-2000., -2000., 4., 2000., 2000., 100.); // trajFilter->SetMomentumCutP(10e-3); // p_lab > 10 MeV // trajFilter->SetEnergyCut(0., 1.02); // 0 < Etot < 1.04 GeV // trajFilter->SetStorePrimaries(kTRUE); // trajFilter->SetStoreSecondaries(kTRUE); // } // ----- Runtime database --------------------------------------------- std::cout << std::endl << std::endl; std::cout << "-I- " << myName << ": Set runtime DB" << std::endl; FairRuntimeDb* rtdb = run->GetRuntimeDb(); CbmFieldPar* fieldPar = (CbmFieldPar*) rtdb->getContainer("CbmFieldPar"); fieldPar->SetParameters(magField); fieldPar->setChanged(); fieldPar->setInputVersion(run->GetRunId(), 1); Bool_t kParameterMerged = kTRUE; FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged); parOut->open(parFile.Data()); rtdb->setOutput(parOut); rtdb->saveOutput(); rtdb->print(); // ------------------------------------------------------------------------ // ----- Start run ---------------------------------------------------- std::cout << std::endl << std::endl; std::cout << "-I- " << myName << ": Starting run" << std::endl; run->Run(nEvents); // ------------------------------------------------------------------------ // ----- Finish ------------------------------------------------------- run->CreateGeometryFile(geoFile); timer.Stop(); Double_t rtime = timer.RealTime(); Double_t ctime = timer.CpuTime(); std::cout << std::endl << std::endl; std::cout << "Macro finished successfully." << std::endl; std::cout << "Output file is " << outFile << std::endl; std::cout << "Parameter file is " << parFile << std::endl; std::cout << "Geometry file is " << geoFile << std::endl; std::cout << "Real time " << rtime << " s, CPU time " << ctime << "s" << std::endl << std::endl; // ------------------------------------------------------------------------ // ----- Resource monitoring ------------------------------------------ if (Has_Fair_Monitor()) { // FairRoot Version >= 15.11 // Extract the maximal used memory an add is as Dart measurement // This line is filtered by CTest and the value send to CDash FairSystemInfo sysInfo; Float_t maxMemory = sysInfo.GetMaxMemory(); std::cout << "<DartMeasurement name=\"MaxMemory\" type=\"numeric/double\">"; std::cout << maxMemory; std::cout << "</DartMeasurement>" << std::endl; Float_t cpuUsage = ctime / rtime; std::cout << "<DartMeasurement name=\"CpuLoad\" type=\"numeric/double\">"; std::cout << cpuUsage; std::cout << "</DartMeasurement>" << std::endl; } std::cout << " Test passed" << std::endl; std::cout << " All ok " << std::endl; // Function needed for CTest runtime dependency Generate_CTest_Dependency_File(depFile); RemoveGeoManager(); // ------------------------------------------------------------------------ }