/* Copyright (C) 2010-2020 GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt SPDX-License-Identifier: GPL-3.0-only Authors: Volker Friese [committer], Philipp Sitzmann, Florian Uhlig */ // -------------------------------------------------------------------------- // // Macro for standard transport simulation using UrQMD input and GEANT3 // CBM setup with MVD only // // V. Friese 06/02/2007 // // -------------------------------------------------------------------------- void mvd_qa1_transUrqmd(const char* setup = "sis100_electron", const char* simulationEngine = "TGeant3") { // ======================================================================== // Adjust this part according to your requirements // Input file TString inDir = gSystem->Getenv("VMCWORKDIR"); // Set the path to the directory with macros for Geant3 and Geant4 // configuration TString tut_configdir = inDir + "/sim/transport/gconfig"; gSystem->Setenv("CONFIG_DIR", tut_configdir.Data()); TString inFile = ""; // Number of events Int_t nEvents = 5; // Output file name TString outDir = "data/"; TString outFile = outDir + "mvd.mcQA.root"; // Parameter file name TString parFile = outDir + "params.root"; TString geoFile = outDir + "geoQA.root"; TString setupFile = inDir + "/geometry/setup/setup_" + setup + ".C"; TString setupFunct = "setup_"; setupFunct = setupFunct + setup + "()"; gROOT->LoadMacro(setupFile); gInterpreter->ProcessLine(setupFunct); CbmSetup* cbmsetup = CbmSetup::Instance(); cbmsetup->RemoveModule(ECbmModuleId::kSts); cbmsetup->RemoveModule(ECbmModuleId::kRich); cbmsetup->RemoveModule(ECbmModuleId::kTrd); cbmsetup->RemoveModule(ECbmModuleId::kTof); cbmsetup->RemoveModule(ECbmModuleId::kPsd); // In general, the following parts need not be touched // ======================================================================== // ---- Debug option ------------------------------------------------- gDebug = 0; // ------------------------------------------------------------------------ // --- Logger settings ---------------------------------------------------- TString logLevel = "INFO"; // "DEBUG"; TString logVerbosity = "LOW"; // ------------------------------------------------------------------------ // ----- Timer -------------------------------------------------------- TStopwatch timer; timer.Start(); // ------------------------------------------------------------------------ // --- Define the target geometry ----------------------------------------- // // The target is not part of the setup, since one and the same setup can // and will be used with different targets. // The target is constructed as a tube in z direction with the specified // diameter (in x and y) and thickness (in z). It will be placed at the // specified position as daughter volume of the volume present there. It is // in the responsibility of the user that no overlaps or extrusions are // created by the placement of the target. // TString targetElement = "Gold"; Double_t targetThickness = 0.025; // full thickness in cm Double_t targetDiameter = 2.5; // diameter in cm Double_t targetPosX = 0.; // target x position in global c.s. [cm] Double_t targetPosY = 0.; // target y position in global c.s. [cm] Double_t targetPosZ = -44.; // target z position in global c.s. [cm] Double_t targetRotY = 0.; // target rotation angle around the y axis [deg] // ------------------------------------------------------------------------ // --- Define the creation of the primary vertex ------------------------ // // By default, the primary vertex point is sampled from a Gaussian // distribution in both x and y with the specified beam profile width, // and from a flat distribution in z over the extension of the target. // By setting the respective flags to kFALSE, the primary vertex will always // at the (0., 0.) in x and y and in the z centre of the target, respectively. // Bool_t smearVertexXY = kTRUE; Bool_t smearVertexZ = kTRUE; Double_t beamWidthX = 1.; // Gaussian sigma of the beam profile in x [cm] Double_t beamWidthY = 1.; // Gaussian sigma of the beam profile in y [cm] // ------------------------------------------------------------------------ // ----- Create simulation run ---------------------------------------- FairRunSim* fRun = new FairRunSim(); fRun->SetName(simulationEngine); // Transport engine fRun->SetOutputFile(outFile); // Output file fRun->SetGenerateRunInfo(kTRUE); // Create FairRunInfo file FairRuntimeDb* rtdb = fRun->GetRuntimeDb(); // ------------------------------------------------------------------------ // ----- Logger settings ---------------------------------------------- FairLogger::GetLogger()->SetLogScreenLevel(logLevel.Data()); FairLogger::GetLogger()->SetLogVerbosityLevel(logVerbosity.Data()); // ------------------------------------------------------------------------ // ----- Create media ------------------------------------------------- fRun->SetMaterials("media.geo"); // Materials // ------------------------------------------------------------------------ // ----- Create and register modules ---------------------------------- TString macroName = gSystem->Getenv("VMCWORKDIR"); macroName += "/macro/run/modules/registerSetup.C"; std::cout << "Loading macro " << macroName << std::endl; gROOT->LoadMacro(macroName); gROOT->ProcessLine("registerSetup()"); // ------------------------------------------------------------------------ // ----- Create and register the target ------------------------------- CbmTarget* target = new CbmTarget(targetElement.Data(), targetThickness, targetDiameter); target->SetPosition(targetPosX, targetPosY, targetPosZ); target->SetRotation(targetRotY); std::cout << target->ToString(); fRun->AddModule(target); // ------------------------------------------------------------------------ // ----- Create magnetic field ---------------------------------------- CbmFieldMap* magField = CbmSetup::Instance()->CreateFieldMap(); if (!magField) { std::cout << "-E- run_sim_new: No valid field!"; return; } fRun->SetField(magField); // ------------------------------------------------------------------------ // ----- Input file --------------------------------------------------- std::cout << std::endl; TString defaultInputFile = inDir + "/input/urqmd.auau.10gev.centr.root"; if (inFile.IsNull()) { // Not defined in the macro explicitly // if ( strcmp(inFile, "") == 0 ) { // not given as argument to the macro inFile = defaultInputFile; // } // else inFile = inputFile; } // ------------------------------------------------------------------------ // ----- Create PrimaryGenerator -------------------------------------- FairPrimaryGenerator* primGen = new FairPrimaryGenerator(); // --- Uniform distribution of event plane angle primGen->SetEventPlane(0., 2. * TMath::Pi()); // --- Get target parameters TVector3 targetPos(0., 0., -44.); Double_t tDz = 0.; if (target) { targetPos = target->GetPosition(); tDz = target->GetThickness(); } primGen->SetTarget(targetPos.Z(), tDz); primGen->SetBeam(0., 0., beamWidthX, beamWidthY); primGen->SmearGausVertexXY(smearVertexXY); primGen->SmearVertexZ(smearVertexZ); // // TODO: Currently, there is no guaranteed consistency of the beam profile // and the transversal target dimension, i.e., that the sampled primary // vertex falls into the target volume. This would require changes // in the FairPrimaryGenerator class. // ------------------------------------------------------------------------ // Use the CbmUnigenGenrator for the input CbmUnigenGenerator* uniGen = new CbmUnigenGenerator(inFile); primGen->AddGenerator(uniGen); fRun->SetGenerator(primGen); // ------------------------------------------------------------------------ // Visualisation of trajectories (TGeoManager Only) // Switch this on if you want to visualise tracks in the event display. // This is normally switch off, because of the huge files created // when it is switched on. fRun->SetStoreTraj(kFALSE); // ----- Run initialisation ------------------------------------------- fRun->Init(); // ------------------------------------------------------------------------ // ----- Runtime database --------------------------------------------- CbmFieldPar* fieldPar = (CbmFieldPar*) rtdb->getContainer("CbmFieldPar"); fieldPar->SetParameters(magField); fieldPar->setChanged(); fieldPar->setInputVersion(fRun->GetRunId(), 1); Bool_t kParameterMerged = kTRUE; FairParRootFileIo* parOut = new FairParRootFileIo(kParameterMerged); parOut->open(parFile.Data()); rtdb->setOutput(parOut); rtdb->saveOutput(); rtdb->print(); // ------------------------------------------------------------------------ // ----- Start run ---------------------------------------------------- fRun->Run(nEvents); // ------------------------------------------------------------------------ fRun->CreateGeometryFile(geoFile); // ----- Finish ------------------------------------------------------- timer.Stop(); Double_t rtime = timer.RealTime(); Double_t ctime = timer.CpuTime(); cout << endl << endl; cout << "Macro finished succesfully." << endl; cout << "Output file is " << outFile << endl; cout << "Parameter file is " << parFile << endl; cout << "Real time " << rtime << " s, CPU time " << ctime << "s" << endl << endl; // ------------------------------------------------------------------------ cout << " Test passed" << endl; cout << " All ok " << endl; }