diff --git a/external/InstallGeometry.cmake b/external/InstallGeometry.cmake
index 3ee350b616dfb308dcac9b26445474c21d13f7e7..b7032b41ee2dd26e78f3aaace3d9519c0a90c591 100644
--- a/external/InstallGeometry.cmake
+++ b/external/InstallGeometry.cmake
@@ -1,4 +1,4 @@
-set(GEOMETRY_VERSION e340b349ccd02abb77e2f6213fbe073ea6549d93)
+set(GEOMETRY_VERSION 7c1914b468bdd14829430e2392cad24d9736f4c2)
 
 set(GEOMETRY_SRC_URL "https://git.cbm.gsi.de/CbmSoft/cbmroot_geometry.git")
 
diff --git a/external/InstallParameter.cmake b/external/InstallParameter.cmake
index 3c4ddd651c2c9f19e51bdf5da23e701134c8c690..71d351d01a3c1b705674630d3743599ca2c12bf7 100644
--- a/external/InstallParameter.cmake
+++ b/external/InstallParameter.cmake
@@ -1,4 +1,4 @@
-set(PARAMETER_VERSION eb8aaee3d8333f851c9c3afe4f0eeceaed4e8699)
+set(PARAMETER_VERSION 8c5e6478a066e9c66bde5d91fcb746c9a759dff5)
 
 set(PARAMETER_SRC_URL "https://git.cbm.gsi.de/CbmSoft/cbmroot_parameter.git")
 
diff --git a/macro/mcbm/geometry/trd/Create_TRD_Geometry_v21a.C b/macro/mcbm/geometry/trd/Create_TRD_Geometry_v21a.C
deleted file mode 100644
index 732e48f90f4dd69aaeae93ee8ef369ad144ed9fa..0000000000000000000000000000000000000000
--- a/macro/mcbm/geometry/trd/Create_TRD_Geometry_v21a.C
+++ /dev/null
@@ -1,4523 +0,0 @@
-/* Copyright (C) 2020 GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt
-   SPDX-License-Identifier: GPL-3.0-only
-   Authors: David Emschermann [committer], Alexandru Bercuci */
-
-///
-/// \file Create_TRD_Geometry_v21a.C
-/// \brief Generates TRD geometry in Root format.
-///
-
-// 2021-07-25 - AB - v21a    - based on v21b, add 2 TRD2D modules and their support structure for the 2021 setup
-// 2020-05-25 - DE - v21b    - based on v20a, use 2 TRD modules for 2021 setup
-// 2020-05-23 - DE - v20a    - add support structure to TRD v18q, realign module in x
-// 2018-08-24 - DE - v18q    - use only 1st 2 layers of TRD in 2018 setup
-// 2017-11-22 - DE - v18n    - do not generate mBUCH at z=125 cm, only mTRD
-// 2017-11-22 - DE - v18m    - mBUCH at z=125 cm, mTRD at z=149, 171, 193 and 215 cm - layer pitch 22 cm from CAD
-// 2017-11-03 - DE - v18l    - shift mTRD to z=140 cm for acceptance matching with mSTS (= same result as v18g)
-// 2017-11-03 - DE - v18k    - plot 4 mTRD modules first, then mBUCH to simplyfy the realignment in x (= same result as v18j)
-// 2017-11-02 - DE - v18j    - move Muenster TRD modules back to original positions in x (fix bug in v18i)
-// 2017-10-17 - DE - v18i    - add Bucharest 60x60 cm2 Bucharest TRD module with FASP ASICs
-// 2017-05-16 - DE - v18e    - re-align all TRD modules to same theta angle using left side of 4th TRD module as reference
-// 2017-05-02 - DE - v18a    - re-base miniTRD v18e on CBM TRD v17a
-// 2017-04-28 - DE - v17     - implement power bus bars as defined in the TDR
-// 2017-04-26 - DE - v17     - add aluminium ledge around backpanel
-// 2017-01-10 - DE - v17a_3e - replace 6 ultimate density by 9 super density FEBs for TRD type 1 modules
-// 2016-07-05 - FU - v16a_3e - identical to v15a, change the way the trd volume is exported to resolve a bug with TGeoShape destructor
-// 2015-01-08 - DE - v15a_3e - reduce frame thickness in large modules to 15 mm instead of 20 mm
-// 2014-06-25 - DE - v14a_3e - consists of only 3 small and 3 large modules types (was 4+4 before)
-// 2014-06-25 - DE - v14a_3e - inner part of all 3 stations is now identical
-// 2014-05-02 - DE - v14a_3e - redesign inner part of station 3, now with 5x5-1 small modules, like in station 1 and station 2
-// 2014-05-02 - DE - v14a_3e - include optional GBTX readout boards on each module
-// 2014-05-02 - DE - v14a_3e - introduce 3x5=15 Spadic FEBs for ultimate density on module type 1
-//
-// 2013-11-14 - DE - v13q_3e - generate information about pad plane layout (CbmTrdPads_v14a.h) for all module types in this macro
-//
-// 2013-11-04 - DE - v13p4 - adapt the number of front-end boards to the pad layout of the 540 mm modules
-// 2013-11-04 - DE - v13p4 - use 8 module types (4x S + 4x L) to better match the occupancy
-// 2013-10-31 - DE - v13p4 - modify the support structure of station 1 to match with the MUCH/RICH platform
-// 2013-10-29 - DE - v13p4 - build lattice grid as TGeoBBox instead of VolumeAssembly - in run_sim.C save  9% of time compared to v13p7
-// 2013-10-29 - DE - v13p4 - build lattice grid as TGeoBBox instead of CompositeShape - in run_sim.C save 18% of time compared to v13p6
-//
-// 2013-10-28 - DE - introduce new geometry naming scheme: v13p1 - SIS 100 hadron
-// 2013-10-28 - DE - introduce new geometry naming scheme: v13p2 - SIS 100 electron
-// 2013-10-28 - DE - introduce new geometry naming scheme: v13p3 - SIS 100 muon
-// 2013-10-28 - DE - introduce new geometry naming scheme: v13p4 - SIS 300 electron
-// 2013-10-28 - DE - introduce new geometry naming scheme: v13p5 - SIS 300 muon
-// 2013-10-28 - DE - add option to draw the magnetic field vector in the magnet
-// 2013-09-27 - DE - do not use TGeoXtru to build the supports, use TGeoBBox instead
-//
-// 2013-06-25 - DE - v13g trd300_rich             (10 layers, z = 4100 ) - TRD right behind SIS300 RICH
-// 2013-06-25 - DE - v13h trd100_sts              ( 4 layers, z = 2600 ) - TRD completely on RICH/MUCH platform to allow TOF to move upstream
-// 2013-06-25 - DE - v13i trd100_rich             ( 2 layers, z = 4100 ) - TRD right behind RICH
-// 2013-06-25 - DE - v13j trd100_rich             ( 3 layers, z = 4100 ) - TRD right behind RICH
-// 2013-06-25 - DE - v13k trd100_rich             ( 4 layers, z = 4100 ) - TRD right behind RICH
-// 2013-06-25 - DE - ---  trd100_much_2_absorbers ( 4 layers, z = 4300 ) - same as version at z = 4600
-// 2013-06-25 - DE - v13l trd100_much_3_absorbers ( 4 layers, z = 4600 ) - TRD right behind SIS100 MUCH
-// 2013-06-25 - DE - v13m trd300_much_6_absorbers (10 layers, z = 5500 ) - TRD right behind SIS300 MUCH
-// 2013-06-25 - DE - v13n trd300_rich_stretched   (10 layers, z = 4600 ) - TRD stretched behind SIS300 RICH
-//
-// 2013-06-19 - DE - add TRD (I, II, III) labels on support structure
-// 2013-05-29 - DE - allow for flexible TRD z-positions defined by position of layer01
-// 2013-05-23 - DE - remove "trd_" prefix from node names (except top node)
-// 2013-05-22 - DE - radiators G30 (z=240 mm)
-// 2013-05-22 - DE - radiators H (z=275 mm - 125 * 2.2mm), (H++ z=335 mm)
-// 2013-05-22 - DE - radiators B++ (z=254 mm - 350 * 0.724 mm), K++ (z=254 mm - 350 * 0.724 mm)
-// 2013-04-17 - DE - introduce volume assembly for layers, e.g. trd_layer03
-// 2013-03-26 - DE - use Air as ASIC material
-// 2013-03-26 - DE - put support structure into its own assembly
-// 2013-03-26 - DE - move TRD upstream to z=400m
-// 2013-03-26 - DE - RICH will probably end at z=380 cm, TRD can move to 400 cm
-// 2013-03-25 - DE - shrink active area from 570 to 540 mm and 960 to 910 mm
-// 2013-03-06 - DE - add ASICs on FEBs
-// 2013-03-05 - DE - introduce supports for SIS100 and SIS300
-// 2013-03-05 - DE - replace all Float_t by Double_t
-// 2013-01-21 - DE - introduce TRD media, use TRDG10 as material for pad plane and FEBs
-// 2013-01-21 - DE - put backpanel into the geometry
-// 2013-01-11 - DE - allow for misalignment of TRD modules
-// 2012-11-04 - DE - add kapton foil, add FR4 padplane
-// 2012-11-03 - DE - add lattice grid on entrance window as CompositeShape
-
-// TODO:
-// - use Silicon as ASIC material
-
-// in root all sizes are given in cm
-
-#include "TDatime.h"
-#include "TFile.h"
-#include "TGeoArb8.h"
-#include "TGeoCompositeShape.h"
-#include "TGeoCone.h"
-#include "TGeoManager.h"
-#include "TGeoMaterial.h"
-#include "TGeoMatrix.h"
-#include "TGeoMedium.h"
-#include "TGeoPgon.h"
-#include "TGeoTube.h"
-#include "TGeoVolume.h"
-#include "TGeoXtru.h"
-#include "TList.h"
-#include "TRandom3.h"
-#include "TString.h"
-#include "TSystem.h"
-
-#include <iostream>
-
-// Name of output file with geometry
-const TString tagVersion = "v21a_mcbm";
-//const TString subVersion   = "_1h";
-//const TString subVersion   = "_1e";
-//const TString subVersion   = "_1m";
-//const TString subVersion   = "_3e";
-//const TString subVersion   = "_3m";
-
-const Int_t setupid = 1;  // 1e is the default
-//const Double_t zfront[5]  = { 260., 410., 360., 410., 550. };
-const Double_t zfront[5] = {260., 177., 360., 410., 550.};  // move 1st TRD to z=177 cm
-//const Double_t zfront[5]  = { 260., 140., 360., 410., 550. };
-const TString setupVer[5] = {"_1h", "_1e", "_1m", "_3e", "_3m"};
-const TString subVersion  = setupVer[setupid];
-
-const TString geoVersion   = "trd_" + tagVersion;  //  + subVersion;
-const TString FileNameSim  = geoVersion + ".geo.root";
-const TString FileNameGeo  = geoVersion + "_geo.root";
-const TString FileNameInfo = geoVersion + ".geo.info";
-const TString FileNamePads = "CbmTrdPads_" + tagVersion + ".h";
-
-// display switches
-const Bool_t IncludeRadiator = false;  // false;  // true, if radiator is included in geometry
-const Bool_t IncludeLattice  = true;   // false;  // true, if lattice grid is included in geometry
-
-const Bool_t IncludeKaptonFoil = true;   // false;  // true, if entrance window is included in geometry
-const Bool_t IncludeGasFrame   = true;   // false;  // true, if frame around gas volume is included in geometry
-const Bool_t IncludePadplane   = true;   // false;  // true, if padplane is included in geometry
-const Bool_t IncludeBackpanel  = true;   // false;  // true, if backpanel is included in geometry
-const Bool_t IncludeAluLedge   = true;   // false;  // true, if Al-ledge around the backpanel is included in geometry
-const Bool_t IncludeGibbet     = true;   // false;  // true, if mTRD gibbet support to be drawn
-const Bool_t IncludePowerbars  = false;  // false;  // true, if LV copper bus bars to be drawn
-
-const Bool_t IncludeFebs        = true;   // false;  // true, if FEBs are included in geometry
-const Bool_t IncludeRobs        = true;   // true, if ROBs are included in geometry
-const Bool_t IncludeAsics       = true;   // true, if ASICs are included in geometry
-const Bool_t IncludeSupports    = false;  // false;  // true, if support structure is included in geometry
-const Bool_t IncludeLabels      = false;  // false;  // true, if TRD (I, II, III) labels are plotted in (VisLevel 5)
-const Bool_t IncludeFieldVector = false;  // true, if magnetic field vector to be shown (in the magnet)
-
-// positioning switches
-const Bool_t DisplaceRandom = false;  // true; // false;  // add random displacement of modules for alignment study
-const Bool_t RotateRandom   = false;  // true; // false;  // add random rotation of modules for alignment study
-const Bool_t DoExplode      = false;  // true, // false;  // add random displacement of modules for alignment study
-
-// positioning parameters
-const Double_t maxdx = 0.2;  // max +- 0.1 cm shift in x
-const Double_t maxdy = 0.2;  // max +- 0.1 cm shift in y
-const Double_t maxdz = 1.0;  // max +- 1.0 cm shift in z
-
-const Double_t maxdrotx = 2.0;  // 20.0; // max rotation around x
-const Double_t maxdroty = 2.0;  // 20.0; // max rotation around y
-const Double_t maxdrotz = 2.0;  // 20.0; // max rotation around z
-
-const Double_t ExplodeFactor = 1.02;  // 1.02; // Factor by which modules are exploded in the x/y plane
-
-// initialise random numbers
-TRandom3 r3(0);
-
-// Parameters defining the layout of the complete detector build out of different detector layers.
-const Int_t MaxLayers = 10;  // max layers
-
-// select layers to display
-//
-//const Int_t    ShowLayer[MaxLayers] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 };  //  1st layer only
-//const Int_t    ShowLayer[MaxLayers] = { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 };  //  2nd layer only
-//const Int_t    ShowLayer[MaxLayers] = { 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 };  //  5th layer only
-//const Int_t    ShowLayer[MaxLayers] = { 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 };  //  6th layer only
-//const Int_t    ShowLayer[MaxLayers] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 };  //  9th layer only
-//const Int_t    ShowLayer[MaxLayers] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 };  // 10th layer only
-//
-//const Int_t    ShowLayer[MaxLayers] = { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 };  // Station 1, layer 1, 2
-//const Int_t    ShowLayer[MaxLayers] = { 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 };  // Station 2, layer 5, 6
-//const Int_t    ShowLayer[MaxLayers] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 };  // Station 3, layer 9,10
-//const Int_t    ShowLayer[MaxLayers] = { 1, 1, 0, 0, 1, 1, 0, 0, 0, 0 };  // Station 1 and 2
-//const Int_t    ShowLayer[MaxLayers] = { 1, 1, 0, 0, 1, 1, 1, 0, 1, 1 };  // Station 1, 2 and 3
-//
-//const Int_t    ShowLayer[MaxLayers] = { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 };  // SIS100-2l  // 1: plot, 0: hide
-//const Int_t    ShowLayer[MaxLayers] = { 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };  // SIS100-3l  // 1: plot, 0: hide
-//
-//const Int_t    ShowLayer[MaxLayers] = { 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 };  // SIS100-4l  // 1: plot, 0: hide
-//const Int_t    ShowLayer[MaxLayers] = { 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 };  // SIS300-mu  // 1: plot, 0: hide
-//const Int_t    ShowLayer[MaxLayers] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };  // SIS300-e   // 1: plot, 0: hide
-Int_t ShowLayer[MaxLayers] = {1, 1, 1, 1, 0, 0, 0, 0, 0, 0};  // SIS100-4l is default
-
-Int_t BusBarOrientation[MaxLayers] = {1, 1, 0, 0, 1, 0, 0, 0, 0, 0};  // 1 = vertical
-
-Int_t PlaneId[MaxLayers];  // automatically filled with layer ID
-
-const Int_t LayerType[MaxLayers] = {10, 11, 20, 20, 20, 21,
-                                    20, 21, 30, 31};  // ab: a [1-4] - layer type, b [0,1] - vertical/horizontal pads
-// ### Layer Type 20 is mCBM Layer Type 2 with Buch prototype module (type 4) with vertical pads
-// ### Layer Type 11 is Layer Type 1 with detector modules rotated by 90??
-// ### Layer Type 21 is Layer Type 2 with detector modules rotated by 90??
-// ### Layer Type 31 is Layer Type 3 with detector modules rotated by 90??
-// In the subroutine creating the layers this is recognized automatically
-
-const Int_t LayerNrInStation[MaxLayers] = {1, 2, 3, 4, 1, 2, 3, 4, 1, 2};
-
-Double_t LayerPosition[MaxLayers] = {0.};  // start position = 0 - 2016-07-12 - DE
-
-// 5x z-positions from 260 till 550 cm
-//Double_t LayerPosition[MaxLayers] = { 260. }; // start position - 2013-10-28 - DE - v14_1h - SIS 100 hadron         ( 4 layers, z = 2600 )
-//Double_t LayerPosition[MaxLayers] = { 410. }; // start position - 2013-10-28 - DE - v14_1e - SIS 100 electron       ( 4 layers, z = 4100 )
-//Double_t LayerPosition[MaxLayers] = { 360. }; // start position - 2014-06-16 - DE - v14_1m - SIS 100 muon           ( 4 layers, z = 3600 ) was 460.
-//Double_t LayerPosition[MaxLayers] = { 410. }; // start position - 2013-10-28 - DE - v14_3e - SIS 300 electron       (10 layers, z = 4100 )
-//Double_t LayerPosition[MaxLayers] = { 550. }; // start position - 2013-10-28 - DE - v14_3m - SIS 300 muon     6_abs (10 layers, z = 5500 )
-//
-// obsolete variants
-//Double_t LayerPosition[MaxLayers] = { 460. }; // start position - 2013-10-28 - DE - v13x3 - SIS 100 muon         ( 4 layers, z = 4600 )
-//Double_t LayerPosition[MaxLayers] = { 410. }; // start position - 2013-06-25 - DE - v13i trd100_rich             ( 2 layers, z = 4100 )
-//Double_t LayerPosition[MaxLayers] = { 410. }; // start position - 2013-06-25 - DE - v13j trd100_rich             ( 3 layers, z = 4100 )
-//Double_t LayerPosition[MaxLayers] = { 430. }; // start position - 2013-06-25 - DE - ---  trd100_much_2_absorbers ( 4 layers, z = 4300 )
-//Double_t LayerPosition[MaxLayers] = { 460. }; // start position - 2013-06-25 - DE - v13n trd300_rich_stretched   (10 layers, z = 4600 )
-
-
-const Double_t LayerThickness = 22.0;  // miniCBM - Thickness of one TRD layer in cm
-//const Double_t LayerThickness = 25.0; // miniCBM - Thickness of one TRD layer in cm
-//const Double_t LayerThickness = 45.0; // Thickness of one TRD layer in cm
-
-const Double_t LayerOffset[MaxLayers] = {0., 0., 0., 0., -112.,
-                                         0., 0., 0., 5., 0.};  // v13x[4,5] - z offset in addition to LayerThickness
-//const Double_t LayerOffset[MaxLayers]    = {   0.,    0.,   0.,   0., -115.,   0.,   0.,   0.,   5.,   0. };  // v13x[4,5] - z offset in addition to LayerThickness
-// 140 / 165 / 190 / 215 / 240 - 115 = 125
-//const Double_t LayerOffset[MaxLayers]    = {   0.,    0.,   0.,   0., -115.,   0.,   0.,   0.,   5.,   0. };  // v13x[4,5] - z offset in addition to LayerThickness
-// 115 / 140 / 165 / 190 / 215 - 125 = 100
-
-// const Double_t LayerOffset[MaxLayers] = {   0.,  -10.,   0.,   0.,   0.,   0.,   0.,   0.,   5.,   0. };  // v13x[4,5] - z offset in addition to LayerThickness
-// 100 / 125 - 10 = 115 / 140 / 165 / 190
-
-//const Double_t LayerOffset[MaxLayers] = {   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0.,   0. };  // SIS100 - z offset in addition to LayerThickness
-//const Double_t LayerOffset[MaxLayers] = {   0.,   0.,   0.,   0.,  95.,   0.,   0.,   0.,   5.,   0. };  // v13n       - z offset in addition to LayerThickness
-
-const Int_t LayerArraySize[3][4] = {{5, 5, 9, 11},  // for layer[1-3][i,o] below
-                                    {5, 5, 9, 11},
-                                    {5, 5, 9, 11}};
-
-
-// ### Layer Type 1
-// v14x - module types in the inner sector of layer type 1 - looking upstream
-const Int_t layer1i[5][5] = {{0, 0, 0, 0, 0},
-                             {0, 0, 0, 0, 0},
-                             {0, 0, 0, 0, 0},
-                             //                            {   0,    0,  101,    0,    0 },
-                             {0, 0, 0, 0, 0},
-                             {0, 0, 0, 0, 0}};
-
-//const Int_t layer1i[5][5] = { { 323,  323,  321,  321,  321 },    // abc: a module type - b orientation (x90 deg) in odd - c even layers
-//                              { 223,  123,  121,  121,  221 },
-//                              { 203,  103,    0,  101,  201 },
-//                              { 203,  103,  101,  101,  201 },
-//                              { 303,  303,  301,  301,  301 } };
-// number of modules: 24
-
-// v14x - module types in the outer sector of layer type 1 - looking upstream
-const Int_t layer1o[9][11] = {
-  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},   {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 821, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
-  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},   {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}};
-//// v14x - module types in the outer sector of layer type 1 - looking upstream
-//const Int_t layer1o[9][11]= { {  0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0 },
-//                              {  0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0 },
-//                              {  0,    0,  823,  823,  723,  721,  721,  821,  821,    0,    0 },
-//                              {  0,    0,  823,  623,    0,    0,    0,  621,  821,    0,    0 },
-//                              {  0,    0,  703,  603,    0,    0,    0,  601,  701,    0,    0 },
-//                              {  0,    0,  803,  603,    0,    0,    0,  601,  801,    0,    0 },
-//                              {  0,    0,  803,  803,  703,  701,  701,  801,  801,    0,    0 },
-//                              {  0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0 },
-//                              {  0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0 } };
-// number of modules: 26
-// Layer1 =  24 + 26;   // v14a
-
-
-// ### Layer Type 2 -> remapped for Buch prototype
-// v14x - module types in the inner sector of layer type 2 - looking upstream
-// const Int_t layer2i[5][5] = { { 323,  323,  321,  321,  321 },    // abc: a module type - b orientation (x90 deg) in odd - c even layers
-//                               { 223,  123,  121,  121,  221 },
-//                               { 203,  103,    0,  101,  201 },
-//                               { 203,  103,  101,  101,  201 },
-//                               { 303,  303,  301,  301,  301 } };
-const Int_t layer2i[5][5] = {{0},  // abc: a module type - b orientation (x90 deg) in odd - c even layers
-                             {0},
-                             {0, 0, 900, 0, 0},
-                             {0},
-                             {0}};
-
-// number of modules: 24
-
-// v14x - module types in the outer sector of layer type 2 - looking upstream
-// const Int_t layer2o[9][11]= { {   0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0 },
-//                               {   0,  823,  823,  823,  823,  821,  821,  821,  821,  821,    0 },
-//                               {   0,  823,  823,  823,  723,  721,  721,  821,  821,  821,    0 },
-//                               {   0,  823,  723,  623,    0,    0,    0,  621,  721,  821,    0 },
-//                               {   0,  803,  703,  603,    0,    0,    0,  601,  701,  801,    0 },
-//                               {   0,  803,  703,  603,    0,    0,    0,  601,  701,  801,    0 },
-//                               {   0,  803,  803,  803,  703,  701,  701,  801,  801,  801,    0 },
-//                               {   0,  803,  803,  803,  803,  801,  801,  801,  801,  801,    0 },
-//                               {   0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0 } };
-const Int_t layer2o[9][11] = {{0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}};
-// number of modules: 54
-// Layer2 =  24 + 54;   // v14a
-
-
-// ### Layer Type 3
-// v14x - module types in the inner sector of layer type 3 - looking upstream
-const Int_t layer3i[5][5] = {
-  {323, 323, 321, 321, 321},  // abc: a module type - b orientation (x90 deg) in odd - c even layers
-  {223, 123, 121, 121, 221},
-  {203, 103, 0, 101, 201},
-  {203, 103, 101, 101, 201},
-  {303, 303, 301, 301, 301}};
-// number of modules: 24
-
-// v14x - module types in the outer sector of layer type 3 - looking upstream
-const Int_t layer3o[9][11] = {
-  {823, 823, 823, 823, 823, 821, 821, 821, 821, 821, 821}, {823, 823, 823, 823, 823, 821, 821, 821, 821, 821, 821},
-  {823, 823, 823, 723, 623, 621, 621, 721, 821, 821, 821}, {823, 823, 723, 623, 0, 0, 0, 621, 721, 821, 821},
-  {803, 803, 703, 603, 0, 0, 0, 601, 701, 801, 801},       {803, 803, 703, 603, 0, 0, 0, 601, 701, 801, 801},
-  {803, 803, 803, 703, 603, 601, 601, 701, 801, 801, 801}, {803, 803, 803, 803, 803, 801, 801, 801, 801, 801, 801},
-  {803, 803, 803, 803, 803, 801, 801, 801, 801, 801, 801}};
-// number of modules: 90
-// Layer2 =  24 + 90;   // v14a
-
-
-// Parameters defining the layout of the different detector modules
-const Int_t NofModuleTypes             = 10;
-const Int_t ModuleType[NofModuleTypes] = {
-  0, 0, 0, 2, 1, 1,
-  1, 1, 2, 3};  // 0 = small module, 1 = large module, 2 = mCBM Bucharest prototype, 3 = mCBM Bucharest TRD-2Dh prototype
-
-// FEB inclination angle
-const Double_t feb_rotation_angle[NofModuleTypes] = {
-  70, 90, 90, 0, 80, 90, 90, 90, 0, 0};  // rotation around x-axis, 0 = vertical, 90 = horizontal
-//const Double_t feb_rotation_angle[NofModuleTypes] = { 45,  45,  45,  45,  45,  45,  45,  45 }; // rotation around x-axis, 0 = vertical, 90 = horizontal
-
-// GBTx ROB definitions
-const Int_t RobsPerModule[NofModuleTypes] = {3, 2, 1, 6, 2, 2, 1, 1, 30, 1};  // number of GBTx ROBs on module
-const Int_t GbtxPerRob[NofModuleTypes]    = {105, 105, 105, 103, 107,
-                                          105, 105, 103, 103, 103};  // number of GBTx ASICs on ROB
-
-const Int_t GbtxPerModule[NofModuleTypes]   = {15, 10, 5, 18, 0,
-                                             10, 5,  3, 18, 18};  // for .geo.info - TODO: merge with above GbtxPerRob
-const Int_t RobTypeOnModule[NofModuleTypes] = {
-  555, 55, 5, 333333, 0, 55, 5, 3, 333333, 333333};  // for .geo.info - TODO: merge with above GbtxPerRob
-
-//const Int_t RobsPerModule[NofModuleTypes] = {  2,  2,  1,  1,  2,  2,  1,  1 }; // number of GBTx ROBs on module
-//const Int_t GbtxPerRob[NofModuleTypes]    = {107,105,105,103,107,105,105,103 }; // number of GBTx ASICs on ROB
-//const Int_t GbtxPerModule[NofModuleTypes] = { 14,  8,  5,  0,  0, 10,  5,  3 }; // for .geo.info - TODO: merge with above GbtxPerRob
-//const Int_t RobTypeOnModule[NofModuleTypes] = { 77, 53,  5,  0,  0, 55,  5,  3 }; // for .geo.info - TODO: merge with above GbtxPerRob
-
-// super density for type 1 modules - 2017 - 540 mm
-const Int_t FebsPerModule[NofModuleTypes] = {9, 5, 6, 18, 12, 8, 4, 3, 18, 18};  // number of FEBs on backside
-//const Int_t FebsPerModule[NofModuleTypes] = {  9,  6,  3,  4, 12,  8,  4,  2 }; // number of FEBs on backside
-const Int_t AsicsPerFeb[NofModuleTypes] = {
-  210, 210, 210, 410, 108, 108, 108, 108, 410, 410};  // %100 gives number of ASICs on FEB, /100 gives grouping
-//// ultimate density - 540 mm
-//const Int_t FebsPerModule[NofModuleTypes] = {  6,  5,  6,  4, 12,  8,  4,  3 }; // number of FEBs on backside - reduced FEBs (64 ch ASICs)
-//const Int_t AsicsPerFeb[NofModuleTypes]   = {315,210,105,105,108,108,108,108 }; //  %100 gives number of ASICs on FEB, /100 gives grouping
-////const Int_t FebsPerModule[NofModuleTypes] = {  6,  5,  3,  2,  6,  3,  4,  3 }; // min number of FEBs // number of FEBs on backside - reduced FEBs (64 ch ASICs)
-////const Int_t AsicsPerFeb[NofModuleTypes]   = {315,210,210,210,216,216,108,108 }; //  %100 gives number of ASICs on FEB, /100 gives grouping
-////const Int_t AsicsPerFeb[NofModuleTypes]   = {216,210,210,210,216,216,108,108 }; //  %100 gives number of ASICs on FEB, /100 gives grouping
-//
-////// super density - 540 mm
-//const Int_t FebsPerModule[NofModuleTypes] = {  9,  5,  6,  4, 12,  6,  4,  3 }; // light // number of FEBs on backside - reduced FEBs (64 ch ASICs)
-//const Int_t AsicsPerFeb[NofModuleTypes]   = {210,210,105,105,108,108,108,108 }; // %100 gives number of ASICs on FEB, /100 gives grouping
-//
-//// normal density - 540 mm
-//const Int_t FebsPerModule[NofModuleTypes] = { 18, 10,  6,  4, 12,  6,  4,  3 }; // number of FEBs on backside (linked to pad layout) - mod4 = mod3, therefore same
-//const Int_t AsicsPerFeb[NofModuleTypes]   = {105,105,105,105,108,108,108,108 }; // %100 gives number of ASICs on FEB, /100 gives grouping
-
-// ultimate density - 570 mm
-//const Int_t FebsPerModule[NofModuleTypes] = {  6,  5,  3,  2,  5,  3,  2,  1 }; // min number of FEBs // number of FEBs on backside - reduced FEBs (64 ch ASICs)
-//const Int_t AsicsPerFeb[NofModuleTypes]   = {216,210,210,210,216,216,216,216 }; //  %100 gives number of ASICs on FEB, /100 gives grouping
-//
-//const Int_t FebsPerModule[NofModuleTypes] = {  6,  5,  3,  3, 10,  5,  3,  3 }; // min (6) module types // number of FEBs on backside - reduced FEBs (64 ch ASICs)
-//const Int_t AsicsPerFeb[NofModuleTypes]   = {216,210,210,210,108,108,108,108 }; //  %100 gives number of ASICs on FEB, /100 gives grouping
-//// super density - 570 mm
-//const Int_t FebsPerModule[NofModuleTypes] = { 10,  5,  5,  5, 12,  6,  4,  3 }; // light // number of FEBs on backside - reduced FEBs (64 ch ASICs)
-//const Int_t AsicsPerFeb[NofModuleTypes]   = {210,210,105,105,108,108,108,108 }; // %100 gives number of ASICs on FEB, /100 gives grouping
-//
-//// normal density - 570 mm
-//const Int_t FebsPerModule[NofModuleTypes] = { 19, 10,  5,  5, 12,  6,  4,  3 }; // number of FEBs on backside (linked to pad layout) - mod4 = mod3, therefore same
-//const Int_t AsicsPerFeb[NofModuleTypes]   = {105,105,105,105,108,108,108,108 }; // %100 gives number of ASICs on FEB, /100 gives grouping
-
-
-/* TODO: activate connector grouping info below
-// ultimate - grouping of pads to connectors
-const Int_t RowsPerConnector[NofModuleTypes]  = {  6,  4,  2,  2,  2,  2,  2,  2 };
-const Int_t ColsPerConnector[NofModuleTypes]  = { 16, 16, 16, 16, 16, 16, 16, 16 };
-// super    - grouping of pads to connectors
-const Int_t RowsPerConnector[NofModuleTypes]  = {  4,  4,  2,  2,  2,  2,  2,  2 };
-const Int_t ColsPerConnector[NofModuleTypes]  = { 16, 16, 16, 16, 16, 16, 16, 16 };
-// normal   - grouping of pads to connectors
-const Int_t RowsPerConnector[NofModuleTypes]  = {  2,  2,  2,  2,  2,  2,  2,  2 };
-const Int_t ColsPerConnector[NofModuleTypes]  = { 16, 16, 16, 16, 16, 16, 16, 16 };
-*/
-
-
-const Double_t feb_z_offset = 0.1;  // 1 mm - offset in z of FEBs to backpanel
-const Double_t asic_offset  = 0.1;  // 1 mm - offset of ASICs to FEBs to avoid overlaps
-
-// ASIC parameters
-Double_t asic_distance;
-
-//const Double_t FrameWidth[2]    = { 1.5, 2.0 };   // Width of detector frames in cm
-const Double_t FrameWidth[4] = {1.5, 1.5, 2.5, 1.5};  // Width of detector frames in cm
-// mini - production
-const Double_t DetectorSizeX[4] = {57., 95., 59.0, 23 + 3.};   // => 54 x 54 cm2 & 91 x 91 cm2 active area
-const Double_t DetectorSizeY[4] = {57., 95., 60.8, 8.16 + 3};  // quadratic modules
-//// default
-//const Double_t DetectorSizeX[2] = { 60., 100.};   // => 57 x 57 cm2 & 96 x 96 cm2 active area
-//const Double_t DetectorSizeY[2] = { 60., 100.};   // quadratic modules
-
-// Parameters tor the lattice grid reinforcing the entrance window
-//const Double_t lattice_o_width[2] = { 1.5, 2.0 };   // Width of outer lattice frame in cm
-const Double_t lattice_o_width[2] = {1.5, 1.5};  // Width of outer lattice frame in cm
-const Double_t lattice_i_width[2] = {0.2, 0.2};  // { 0.4, 0.4 };   // Width of inner lattice frame in cm
-// Thickness (in z) of lattice frames in cm - see below
-
-// statistics
-Int_t ModuleStats[MaxLayers][NofModuleTypes] = {0};
-
-// z - geometry of TRD modules
-const Double_t radiator_thickness = 0.0;  // 35 cm thickness of radiator
-//const Double_t radiator_thickness     =  30.0;    // 30 cm thickness of radiator + shift pad plane to integer multiple of 1 mm
-const Double_t radiator_position = -LayerThickness / 2. + radiator_thickness / 2.;
-
-//const Double_t lattice_thickness      =   1.0;  // 1.0;  // 10 mm thick lattice frames
-const Double_t lattice_thickness = 1.0 - 0.0025;  // 0.9975;  // 1.0;  // 10 mm thick lattice frames
-const Double_t lattice_position  = radiator_position + radiator_thickness / 2. + lattice_thickness / 2.;
-
-const Double_t kapton_thickness = 0.0025;  //  25 micron thickness of kapton
-const Double_t kapton_position  = lattice_position + lattice_thickness / 2. + kapton_thickness / 2.;
-
-const Double_t gas_thickness = 1.2;  //  12 mm thickness of gas
-const Double_t gas_position  = kapton_position + kapton_thickness / 2. + gas_thickness / 2.;
-
-// frame thickness
-const Double_t frame_thickness = gas_thickness;  // frame covers gas volume: from kapton foil to pad plane
-const Double_t frame_position =
-  -LayerThickness / 2. + radiator_thickness + lattice_thickness + kapton_thickness + frame_thickness / 2.;
-
-// pad plane
-const Double_t padcopper_thickness = 0.0025;  //  25 micron thickness of copper pads
-const Double_t padcopper_position  = gas_position + gas_thickness / 2. + padcopper_thickness / 2.;
-
-const Double_t padplane_thickness = 0.0360;  // 360 micron thickness of padplane
-const Double_t padplane_position  = padcopper_position + padcopper_thickness / 2. + padplane_thickness / 2.;
-
-// backpanel components
-const Double_t carbon_thickness = 0.0190 * 2;  // use 2 layers!!   // 190 micron thickness for 1 layer of carbon fibers
-const Double_t honeycomb_thickness = 2.3 - kapton_thickness - padcopper_thickness - padplane_thickness
-                                     - carbon_thickness;  //  ~ 2.3 mm thickness of honeycomb
-const Double_t honeycomb_position = padplane_position + padplane_thickness / 2. + honeycomb_thickness / 2.;
-const Double_t carbon_position    = honeycomb_position + honeycomb_thickness / 2. + carbon_thickness / 2.;
-
-// aluminium thickness
-const Double_t aluminium_thickness = 0.4;  // crossbar of 1 x 1 cm at every module edge
-const Double_t aluminium_width     = 1.0;  // crossbar of 1 x 1 cm at every module edge
-const Double_t aluminium_position  = carbon_position + carbon_thickness / 2. + aluminium_thickness / 2.;
-
-// power bus bars
-const Double_t powerbar_thickness = 1.0;  // 1 cm in z direction
-const Double_t powerbar_width     = 2.0;  // 2 cm in x/y direction
-const Double_t powerbar_position  = aluminium_position + aluminium_thickness / 2. + powerbar_thickness / 2.;
-
-// gibbet support
-const Double_t gibbet_thickness = 10.0;  // 10 cm in z direction
-const Double_t gibbet_width     = 10.0;  // 10 cm in x/y direction
-const Double_t gibbet_position  = aluminium_position + aluminium_thickness / 2. + gibbet_thickness / 2.;
-
-// module rails
-const Double_t rail_thickness = 5.0;  // 5 cm in z direction
-const Double_t rail_width     = 3.0;  // 3 cm in x/y direction
-const Double_t rail_position  = aluminium_position + aluminium_thickness / 2. + rail_thickness / 2.;
-
-// readout boards
-//const  Double_t feb_width           =  10.0;    // width of FEBs in cm
-const Double_t feb_width          = 8.5;   // width of FEBs in cm
-const Double_t feb_thickness      = 0.25;  // light //  2.5 mm thickness of FEBs
-const Double_t febvolume_position = aluminium_position + aluminium_thickness / 2. + feb_width / 2.;
-
-// ASIC parameters
-const Double_t asic_thickness = 0.25;  // 2.5 mm asic_thickness
-const Double_t asic_width     = 3.0;   // 2.0;  1.0;   // 1 cm
-
-
-// --------------      BUCHAREST PROTOTYPE SPECIFICS      ----------------------------------
-// Frontpanel components
-const Double_t carbonBu_thickness    = 0.03;  // 300 micron thickness for 1 layer of carbon fibers
-const Double_t honeycombBu_thickness = 0.94;  // 9 mm thickness of honeycomb
-const Double_t WIN_Frame_thickness   = 0.6;   // entrance window framing 6x12 mm2
-//const Double_t carbonBu0_position    = radiator_position + radiator_thickness / 2. + carbonBu_thickness / 2.;
-const Double_t honeycombBu0_position = radiator_position + radiator_thickness / 2. + honeycombBu_thickness / 2.;
-const Double_t carbonBu1_position    = honeycombBu0_position + honeycombBu_thickness / 2. + carbonBu_thickness / 2.;
-// Active volume
-const Double_t gasBu_position = carbonBu1_position + carbonBu_thickness / 2. + gas_thickness / 2.;
-// Pad plane
-const Double_t padcopperBu_position = gasBu_position + gas_thickness / 2. + padcopper_thickness / 2.;
-const Double_t padplaneBu_position  = padcopperBu_position + padcopper_thickness / 2. + padplane_thickness / 2.;
-// Backpanel components
-const Double_t honeycombBu1_position = padplaneBu_position + padplane_thickness / 2. + honeycombBu_thickness / 2.;
-// PCB
-const Double_t glassFibre_thickness = 0.0270;  // 300 microns overall PCB thickness
-const Double_t cuCoating_thickness  = 0.0030;
-const Double_t glassFibre_position  = honeycombBu1_position + honeycombBu_thickness / 2. + glassFibre_thickness / 2.;
-const Double_t cuCoating_position   = glassFibre_position + glassFibre_thickness / 2. + cuCoating_thickness / 2.;
-//Frame around entrance window, active volume and exit window
-const Double_t frameBu_thickness = 2 * carbonBu_thickness + honeycombBu_thickness + gas_thickness + padcopper_thickness
-                                   + padplane_thickness + honeycombBu_thickness + glassFibre_thickness
-                                   + cuCoating_thickness;
-const Double_t frameBu_position = radiator_position + radiator_thickness / 2. + frameBu_thickness / 2.;
-// ROB FASP
-const Double_t febFASP_zspace    = 1.5;  // gap size between boards
-const Double_t febFASP_width     = 5.5;  // width of FASP FEBs in cm
-const Double_t febFASP_position  = cuCoating_position + febFASP_width / 2. + 1.5;
-const Double_t febFASP_thickness = feb_thickness;
-
-// FASP-ASIC parameters
-const Double_t fasp_size[2] = {2, 2.5};  // FASP package size 2x3 cm2
-const Double_t fasp_xoffset = 1.35;      // ASIC offset from ROC middle (horizontally)
-const Double_t fasp_yoffset = 0.6;       // ASIC offset from DET connector (vertical)
-// GETS2C-ROB3 connector boord parameters
-const Double_t robConn_size_x    = 15.0;
-const Double_t robConn_size_y    = 6.0;
-const Double_t robConn_xoffset   = 6.0;
-const Double_t robConn_FMCwidth  = 1.5;  // width of a MF FMC connector
-const Double_t robConn_FMClength = 6.5;  // length of a MF FMC connector
-const Double_t robConn_FMCheight = 1.5;  // height of a MF FMC connector
-
-// C-ROB3 parameters : GBTx ROBs
-const Double_t rob_size_x    = 20.0;  // 13.0; // 130 mm
-const Double_t rob_size_y    = 9.0;   //  4.5; //  45 mm
-const Double_t rob_yoffset   = 0.3;   // offset wrt detector frame (on the detector plane)
-const Double_t rob_zoffset   = -7.5;  // offset wrt entrace plane - center board
-const Double_t rob_thickness = feb_thickness;
-// GBTX parameters
-const Double_t gbtx_thickness = 0.25;  // 2.5 mm
-const Double_t gbtx_width     = 3.0;   // 2.0;  1.0;   // 1 cm
-const Double_t gbtx_distance  = 0.4;
-
-
-// Names of the different used materials which are used to build the modules
-// The materials are defined in the global media.geo file
-const TString KeepingVolumeMedium     = "air";
-const TString RadiatorVolumeMedium    = "TRDpefoam20";
-const TString LatticeVolumeMedium     = "TRDG10";
-const TString KaptonVolumeMedium      = "TRDkapton";
-const TString GasVolumeMedium         = "TRDgas";
-const TString PadCopperVolumeMedium   = "TRDcopper";
-const TString PadPcbVolumeMedium      = "TRDG10";  // todo - put correct FEB material here
-const TString HoneycombVolumeMedium   = "TRDaramide";
-const TString CarbonVolumeMedium      = "TRDcarbon";
-const TString FebVolumeMedium         = "TRDG10";  // todo - put correct FEB material here
-const TString AsicVolumeMedium        = "air";     // todo - put correct ASIC material here
-const TString TextVolumeMedium        = "air";     // leave as air
-const TString FrameVolumeMedium       = "TRDG10";
-const TString PowerBusVolumeMedium    = "TRDcopper";  // power bus bars
-const TString AluLegdeVolumeMedium    = "aluminium";  // aluminium frame around backpanel
-const TString AluminiumVolumeMedium   = "aluminium";
-const TString Kanya10x10sVolumeMedium = "KANYAProfile10x10Strong";
-const TString Kanya10x10nVolumeMedium = "KANYAProfile10x10Normal";
-const TString Kanya03x05nVolumeMedium = "KANYAProfile3x5Normal";
-//const TString MylarVolumeMedium       = "mylar";
-//const TString RadiatorVolumeMedium    = "polypropylene";
-//const TString ElectronicsVolumeMedium = "goldcoatedcopper";
-
-// some global variables
-TGeoManager* gGeoMan = NULL;           // Pointer to TGeoManager instance
-TGeoVolume* gModules[NofModuleTypes];  // Global storage for module types
-
-// Forward declarations
-void create_materials_from_media_file();
-TGeoVolume* create_trd_module_type(Int_t moduleType);
-TGeoVolume* create_trd2d_module_type(Int_t moduleType);
-void create_detector_layers(Int_t layer);
-void create_gibbet_support();
-void create_power_bars_vertical();
-void create_power_bars_horizontal();
-void create_xtru_supports();
-void create_box_supports();
-void add_trd_labels(TGeoVolume*, TGeoVolume*, TGeoVolume*);
-void create_mag_field_vector();
-void dump_info_file();
-void dump_digi_file();
-
-
-void Create_TRD_Geometry_v21a()
-{
-
-  // declare TRD layer layout
-  if (setupid > 2)
-    for (Int_t i = 0; i < MaxLayers; i++)
-      ShowLayer[i] = 1;  // show all layers
-
-  // Load needed material definition from media.geo file
-  create_materials_from_media_file();
-
-  // Position the layers in z
-  for (Int_t iLayer = 1; iLayer < MaxLayers; iLayer++)
-    LayerPosition[iLayer] =
-      LayerPosition[iLayer - 1] + LayerThickness + LayerOffset[iLayer];  // add offset for extra gaps
-
-  // Get the GeoManager for later usage
-  gGeoMan = (TGeoManager*) gROOT->FindObject("FAIRGeom");
-  gGeoMan->SetVisLevel(10);
-
-  // Create the top volume
-  TGeoBBox* topbox = new TGeoBBox("", 1000., 1000., 2000.);
-  TGeoVolume* top  = new TGeoVolume("top", topbox, gGeoMan->GetMedium("air"));
-  gGeoMan->SetTopVolume(top);
-
-  TGeoVolume* trd = new TGeoVolumeAssembly(geoVersion);
-  top->AddNode(trd, 1);
-
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    Int_t moduleType  = iModule + 1;
-    gModules[iModule] = (iModule >= 8 ? create_trd2d_module_type(moduleType) : create_trd_module_type(moduleType));
-  }
-
-  Int_t nLayer = 0;  // active layer counter
-  for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++) {
-    //    if ((iLayer != 0) && (iLayer != 3))  continue;  // first layer only - comment later on
-    //    if (iLayer != 0) continue;  // first layer only - comment later on
-    if (ShowLayer[iLayer]) {
-      PlaneId[iLayer] = ++nLayer;
-      create_detector_layers(iLayer);
-      //      printf("calling layer %2d\n",iLayer);
-    }
-  }
-
-  // TODO: remove or comment out
-  // test PlaneId
-  printf("generated TRD layers: ");
-  for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++)
-    if (ShowLayer[iLayer]) printf(" %2d", PlaneId[iLayer]);
-  printf("\n");
-
-  if (IncludeSupports) { create_box_supports(); }
-
-  if (IncludeGibbet) { create_gibbet_support(); }
-
-  if (IncludePowerbars) {
-    create_power_bars_vertical();
-    create_power_bars_horizontal();
-  }
-
-  if (IncludeFieldVector) create_mag_field_vector();
-
-  gGeoMan->CloseGeometry();
-  gGeoMan->CheckOverlaps(0.001);
-  gGeoMan->PrintOverlaps();
-  gGeoMan->Test();
-
-  trd->Export(FileNameSim);  // an alternative way of writing the trd volume
-
-  TFile* outfile = new TFile(FileNameSim, "UPDATE");
-  //  TGeoTranslation* trd_placement = new TGeoTranslation("trd_trans", 0., 0., 0.);
-  //  TGeoTranslation* trd_placement = new TGeoTranslation("trd_trans", 0., 0., zfront[setupid]);
-  TGeoTranslation* trd_placement = new TGeoTranslation("trd_trans", -7., 0., zfront[setupid]);
-  trd_placement->Write();
-  outfile->Close();
-
-  outfile = new TFile(FileNameGeo, "RECREATE");
-  gGeoMan->Write();  // use this is you want GeoManager format in the output
-  outfile->Close();
-
-  dump_info_file();
-  dump_digi_file();
-
-  top->Draw("ogl");
-
-  //top->Raytrace();
-
-  //  cout << "Press Return to exit" << endl;
-  //  cin.get();
-  //  exit();
-}
-
-
-//==============================================================
-void dump_digi_file()
-{
-  TDatime datetime;  // used to get timestamp
-
-  const Double_t ActiveAreaX[4] = {DetectorSizeX[0] - 2 * FrameWidth[0], DetectorSizeX[1] - 2 * FrameWidth[1],
-                                   DetectorSizeX[2] - 2 * FrameWidth[2], DetectorSizeX[3] - 2 * FrameWidth[3]};
-  const Double_t ActiveAreaY[4] = {DetectorSizeY[0] - 2 * FrameWidth[0], DetectorSizeY[1] - 2 * FrameWidth[1],
-                                   DetectorSizeY[2] - 2 * FrameWidth[2], DetectorSizeY[3] - 2 * FrameWidth[3]};
-  const Int_t NofSectors        = 3;
-  const Int_t NofPadsInRow[4]   = {80, 128, 72, 32};  // number of pads in rows
-  Int_t nrow                    = 0;                  // number of rows in module
-
-  const Double_t PadHeightInSector[NofModuleTypes][NofSectors] =  // pad height
-    {{1.50, 1.50, 1.50},                                          // module type 1 -  1.01 mm2
-     {2.25, 2.25, 2.25},                                          // module type 2 -  1.52 mm2
-     //          {  2.75,  2.50,  2.75 },   // module type 2 -  1.86 mm2
-     {4.50, 4.50, 4.50},  // module type 3 -  3.04 mm2
-     //          {  2.75,  6.75,  6.75 },   // module type 4 -  4.56 mm2
-     {2.79, 2.79, 2.79},  // module type 4 -  triangular pads H=27.7+0.2 mm, W=7.3+0.2 mm
-
-     {3.75, 4.00, 3.75},     // module type 5 -  2.84 mm2
-     {5.75, 5.75, 5.75},     // module type 6 -  4.13 mm2
-     {11.50, 11.50, 11.50},  // module type 7 -  8.26 mm2
-     {15.25, 15.50, 15.25},  // module type 8 - 11.14 mm2
-     // TRD2D with triangular pads
-     {2.79, 2.79, 2.79},   // module type 9 -  H=27.7+0.2 mm, W=7.3+0.2 mm
-     {2.72, 2.72, 2.72}};  // module type 10 - H=27.7+0.2 mm, W=7.3+0.2 mm
-  //          { 23.00, 23.00, 23.00 } };     // module type 8 - 16.52 mm2
-  //          {  7.50,  7.75,  7.50 },   // module type 6 -  5.51 mm2
-  //          {  5.50,  5.75,  5.50 },   // module type 6 -  4.09 mm2
-  //          { 11.25, 11.50, 11.25 },   // module type 7 -  8.18 mm2
-
-  const Int_t NofRowsInSector[NofModuleTypes][NofSectors] =  // number of rows per sector
-    {{12, 12, 12},                                           // module type 1
-     {8, 8, 8},                                              // module type 2
-     //          {   8,   4,   8 },         // module type 2
-     {4, 4, 4},   // module type 3
-                  //          {   2,   4,   2 },         // module type 4
-     {2, 16, 2},  // module type 4
-
-     {8, 8, 8},   // module type 5
-     {4, 8, 4},   // module type 6
-     {2, 4, 2},   // module type 7
-     {2, 2, 2},   // module type 8
-                  //          {   1,   2,   1 } };       // module type 8
-                  //          {  10,   4,  10 },         // module type 5
-                  //          {   4,   4,   4 },         // module type 6
-                  //          {   2,  12,   2 },         // module type 6
-                  //          {   2,   4,   2 },         // module type 7
-                  //          {   2,   2,   2 } };       // module type 8
-     {1, 18, 1},  // module type 9
-     {1, 1, 1}};  // module type 10
-
-  Double_t HeightOfSector[NofModuleTypes][NofSectors];
-  Double_t PadWidth[NofModuleTypes];
-
-  // calculate pad width
-  for (Int_t im = 0; im < NofModuleTypes; im++)
-    PadWidth[im] = ActiveAreaX[ModuleType[im]] / NofPadsInRow[ModuleType[im]];
-
-  // calculate height of sectors
-  for (Int_t im = 0; im < NofModuleTypes; im++)
-    for (Int_t is = 0; is < NofSectors; is++)
-      HeightOfSector[im][is] = NofRowsInSector[im][is] * PadHeightInSector[im][is];
-
-  // check, if the entire module size is covered by pads
-  for (Int_t im = 0; im < NofModuleTypes; im++) {
-    if (im != 3
-        && ActiveAreaY[ModuleType[im]] - (HeightOfSector[im][0] + HeightOfSector[im][1] + HeightOfSector[im][2]) != 0) {
-      printf("WARNING: sector size does not add up to module size for module "
-             "type %d\n",
-             im + 1);
-      printf("%.2f = %.2f + %.2f + %.2f\n", ActiveAreaY[ModuleType[im]], HeightOfSector[im][0], HeightOfSector[im][1],
-             HeightOfSector[im][2]);
-      //exit(1);
-    }
-  }
-  //==============================================================
-
-  printf("writing trd pad information file: %s\n", FileNamePads.Data());
-
-  FILE* ifile;
-  ifile = fopen(FileNamePads.Data(), "w");
-
-  if (ifile == NULL) {
-    printf("error opening %s\n", FileNamePads.Data());
-    exit(1);
-  }
-
-  fprintf(ifile, "//\n");
-  fprintf(ifile, "//   TRD pad layout for geometry %s\n", tagVersion.Data());
-  fprintf(ifile, "//\n");
-  fprintf(ifile, "// automatically generated by Create_TRD_Geometry_%s%s.C\n", tagVersion.Data(), subVersion.Data());
-  fprintf(ifile, "// created %d\n", datetime.GetDate());
-  fprintf(ifile, "//\n");
-
-  fprintf(ifile, "\n");
-  fprintf(ifile, "#ifndef CBMTRDPADS_H\n");
-  fprintf(ifile, "#define CBMTRDPADS_H\n");
-  fprintf(ifile, "\n");
-  fprintf(ifile, "Int_t fst1_sect_count = 3;\n");
-  fprintf(ifile, "// array of pad geometries in the TRD (trd1mod[1-%d])\n", NofModuleTypes);
-  fprintf(ifile, "// %d modules  // 3 sectors  // 4 values \n", NofModuleTypes);
-  fprintf(ifile, "Float_t fst1_pad_type[%d][3][4] =        \n", NofModuleTypes);
-  //fprintf(ifile,"Double_t fst1_pad_type[8][3][4] =       \n");
-  fprintf(ifile, "			 		 \n");
-
-  for (Int_t im = 0; im < NofModuleTypes; im++) {
-    if (im + 1 == 5) fprintf(ifile, "//---\n\n");
-    fprintf(ifile, "// module type %d\n", im + 1);
-
-    // number of pads
-    nrow = 0;  // reset number of pad rows to 0
-    for (Int_t is = 0; is < NofSectors; is++)
-      nrow += HeightOfSector[im][is] / PadHeightInSector[im][is];  // add number of rows in this sector
-    fprintf(ifile, "// number of pads: %3d x %2d = %4d\n", NofPadsInRow[ModuleType[im]], nrow,
-            NofPadsInRow[ModuleType[im]] * nrow);
-
-    // pad size
-    fprintf(ifile, "// pad size sector 1: %5.2f cm x %5.2f cm = %5.2f cm2\n", PadWidth[im], PadHeightInSector[im][1],
-            PadWidth[im] * PadHeightInSector[im][1]);
-    fprintf(ifile, "// pad size sector 0: %5.2f cm x %5.2f cm = %5.2f cm2\n", PadWidth[im], PadHeightInSector[im][0],
-            PadWidth[im] * PadHeightInSector[im][0]);
-
-    for (Int_t is = 0; is < NofSectors; is++) {
-      if ((im == 0) && (is == 0)) fprintf(ifile, "  { { ");
-      else if (is == 0)
-        fprintf(ifile, "    { ");
-      else
-        fprintf(ifile, "      ");
-
-      fprintf(ifile, "{ %.1f, %5.2f, %.1f/%3d, %5.2f }", ActiveAreaX[ModuleType[im]], HeightOfSector[im][is],
-              ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][is]);
-
-      if ((im == NofModuleTypes - 1) && (is == 2)) fprintf(ifile, " } };");
-      else if (is == 2)
-        fprintf(ifile, " },");
-      else
-        fprintf(ifile, ",");
-
-      fprintf(ifile, "\n");
-    }
-
-    fprintf(ifile, "\n");
-  }
-
-  fprintf(ifile, "#endif\n");
-
-  //  Int_t im = 0;
-  //  fprintf(ifile,"// module type %d	 		   \n", im+1);
-  //  fprintf(ifile,"  { { { %.1f, %5.2f, %.1f/%3d, %5.2f },    \n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][0], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][0]);
-  //  fprintf(ifile,"      { %.1f, %5.2f, %.1f/%3d, %5.2f },    \n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][1], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][1]);
-  //  fprintf(ifile,"      { %.1f, %5.2f, %.1f/%3d, %5.2f } },  \n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][2], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][2]);
-  //  fprintf(ifile,"\n");
-  //
-  //  for (Int_t im = 1; im < NofModuleTypes-1; im++)
-  //  {
-  //    fprintf(ifile,"// module type %d	 		     \n", im+1);
-  //    fprintf(ifile,"    { { %.1f, %5.2f, %.1f/%3d, %5.2f },    \n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][0], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][0]);
-  //    fprintf(ifile,"      { %.1f, %5.2f, %.1f/%3d, %5.2f },    \n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][1], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][1]);
-  //    fprintf(ifile,"      { %.1f, %5.2f, %.1f/%3d, %5.2f } },  \n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][2], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][2]);
-  //    fprintf(ifile,"\n");
-  //  }
-  //
-  //  Int_t im = 7;
-  //  fprintf(ifile,"// module type %d	 		   \n", im+1);
-  //  fprintf(ifile,"    { { %.1f, %5.2f, %.1f/%3d, %5.2f },    \n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][0], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][0]);
-  //  fprintf(ifile,"      { %.1f, %5.2f, %.1f/%3d, %5.2f },    \n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][1], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][1]);
-  //  fprintf(ifile,"      { %.1f, %5.2f, %.1f/%3d, %5.2f } } };\n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][2], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][2]);
-  //  fprintf(ifile,"\n");
-
-  fclose(ifile);
-}
-
-
-void dump_info_file()
-{
-  TDatime datetime;  // used to get timestamp
-
-  Double_t z_first_layer = 2000;  // z position of first layer (front)
-  Double_t z_last_layer  = 0;     // z position of last  layer (front)
-
-  Double_t xangle;  // horizontal angle
-  Double_t yangle;  // vertical   angle
-
-  Double_t total_surface = 0;  // total surface
-  Double_t total_actarea = 0;  // total active area
-
-  Int_t channels_per_module[NofModuleTypes + 1] = {0};  // number of channels per module
-  Int_t channels_per_feb[NofModuleTypes + 1]    = {0};  // number of channels per feb
-  Int_t asics_per_module[NofModuleTypes + 1]    = {0};  // number of asics per module
-
-  Int_t total_modules[NofModuleTypes + 1]  = {0};  // total number of modules
-  Int_t total_febs[NofModuleTypes + 1]     = {0};  // total number of febs
-  Int_t total_asics[NofModuleTypes + 1]    = {0};  // total number of asics
-  Int_t total_gbtx[NofModuleTypes + 1]     = {0};  // total number of gbtx
-  Int_t total_rob3[NofModuleTypes + 1]     = {0};  // total number of gbtx rob3
-  Int_t total_rob5[NofModuleTypes + 1]     = {0};  // total number of gbtx rob5
-  Int_t total_rob7[NofModuleTypes + 1]     = {0};  // total number of gbtx rob7
-  Int_t total_channels[NofModuleTypes + 1] = {0};  // total number of channels
-
-  Int_t total_channels_u = 0;  // total number of ultimate channels
-  Int_t total_channels_s = 0;  // total number of super    channels
-  Int_t total_channels_r = 0;  // total number of regular  channels
-
-  printf("writing summary information file: %s\n", FileNameInfo.Data());
-
-  FILE* ifile;
-  ifile = fopen(FileNameInfo.Data(), "w");
-
-  if (ifile == NULL) {
-    printf("error opening %s\n", FileNameInfo.Data());
-    exit(1);
-  }
-
-  fprintf(ifile, "#\n##   %s information file\n#\n\n", geoVersion.Data());
-
-  fprintf(ifile, "# created %d\n\n", datetime.GetDate());
-
-  // determine first and last TRD layer
-  for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++) {
-    if (ShowLayer[iLayer]) {
-      if (z_first_layer > LayerPosition[iLayer]) z_first_layer = LayerPosition[iLayer];
-      if (z_last_layer < LayerPosition[iLayer]) z_last_layer = LayerPosition[iLayer];
-    }
-  }
-
-  fprintf(ifile, "# envelope\n");
-  // Show extension of TRD
-  fprintf(ifile, "%4f cm   start of TRD (z)\n", z_first_layer);
-  fprintf(ifile, "%4f cm   end   of TRD (z)\n", z_last_layer + LayerThickness);
-  fprintf(ifile, "\n");
-
-  // Layer thickness
-  fprintf(ifile, "# thickness\n");
-  fprintf(ifile, "%4f cm   per single layer (z)\n", LayerThickness);
-  fprintf(ifile, "\n");
-
-  // Show extra gaps
-  fprintf(ifile, "# extra gaps\n ");
-  for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++)
-    if (ShowLayer[iLayer]) fprintf(ifile, "%3f ", LayerOffset[iLayer]);
-  fprintf(ifile, "   extra gaps in z (cm)\n");
-  fprintf(ifile, "\n");
-
-  // Show layer flags
-  fprintf(ifile, "# generated TRD layers\n ");
-  for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++)
-    if (ShowLayer[iLayer]) fprintf(ifile, "%2d ", PlaneId[iLayer]);
-  fprintf(ifile, "   planeID\n");
-  fprintf(ifile, "\n");
-
-  // Dimensions in x
-  fprintf(ifile, "# dimensions in x\n");
-  for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++)
-    if (ShowLayer[iLayer]) {
-      if (PlaneId[iLayer] <= 5) {
-        Int_t type = LayerType[iLayer] / 10;
-        fprintf(ifile, "%5f cm to %5f cm x-dimension of layer %2d\n", -3.5 * DetectorSizeX[type],
-                3.5 * DetectorSizeX[type], PlaneId[iLayer]);
-      }
-      else {
-        if (PlaneId[iLayer] < 9)
-          fprintf(ifile, "%5f cm to %5f cm x-dimension of layer %2d\n", -4.5 * DetectorSizeX[1], 4.5 * DetectorSizeX[1],
-                  PlaneId[iLayer]);
-        else
-          fprintf(ifile, "%5f cm to %5f cm x-dimension of layer %2d\n", -5.5 * DetectorSizeX[1], 5.5 * DetectorSizeX[1],
-                  PlaneId[iLayer]);
-      }
-    }
-  fprintf(ifile, "\n");
-
-  // Dimensions in y
-  fprintf(ifile, "# dimensions in y\n");
-  for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++)
-    if (ShowLayer[iLayer]) {
-      if (PlaneId[iLayer] <= 5) {
-        Int_t type = LayerType[iLayer] / 10;
-        fprintf(ifile, "%5f cm to %5f cm y-dimension of layer %2d\n", -2.5 * DetectorSizeY[type],
-                2.5 * DetectorSizeY[type], PlaneId[iLayer]);
-      }
-      else {
-        if (PlaneId[iLayer] < 9)
-          fprintf(ifile, "%5f cm to %5f cm y-dimension of layer %2d\n", -3.5 * DetectorSizeY[1], 3.5 * DetectorSizeY[1],
-                  PlaneId[iLayer]);
-        else
-          fprintf(ifile, "%5f cm to %5f cm y-dimension of layer %2d\n", -4.5 * DetectorSizeY[1], 4.5 * DetectorSizeY[1],
-                  PlaneId[iLayer]);
-      }
-    }
-  fprintf(ifile, "\n");
-
-  // Show layer positions
-  fprintf(ifile, "# z-positions of layer front\n");
-  for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++) {
-    if (ShowLayer[iLayer]) fprintf(ifile, "%5f cm   z-position of layer %2d\n", LayerPosition[iLayer], PlaneId[iLayer]);
-  }
-  fprintf(ifile, "\n");
-
-  // flags
-  fprintf(ifile, "# flags\n");
-
-  fprintf(ifile, "support structure is    : ");
-  if (!IncludeSupports) fprintf(ifile, "NOT ");
-  fprintf(ifile, "included\n");
-
-  fprintf(ifile, "radiator is             : ");
-  if (!IncludeRadiator) fprintf(ifile, "NOT ");
-  fprintf(ifile, "included\n");
-
-  fprintf(ifile, "lattice grid is         : ");
-  if (!IncludeLattice) fprintf(ifile, "NOT ");
-  fprintf(ifile, "included\n");
-
-  fprintf(ifile, "kapton window is        : ");
-  if (!IncludeKaptonFoil) fprintf(ifile, "NOT ");
-  fprintf(ifile, "included\n");
-
-  fprintf(ifile, "gas frame is            : ");
-  if (!IncludeGasFrame) fprintf(ifile, "NOT ");
-  fprintf(ifile, "included\n");
-
-  fprintf(ifile, "padplane is             : ");
-  if (!IncludePadplane) fprintf(ifile, "NOT ");
-  fprintf(ifile, "included\n");
-
-  fprintf(ifile, "backpanel is            : ");
-  if (!IncludeBackpanel) fprintf(ifile, "NOT ");
-  fprintf(ifile, "included\n");
-
-  fprintf(ifile, "Aluminium ledge is      : ");
-  if (!IncludeAluLedge) fprintf(ifile, "NOT ");
-  fprintf(ifile, "included\n");
-
-  fprintf(ifile, "Gibbet support is       : ");
-  if (!IncludeGibbet) fprintf(ifile, "NOT ");
-  fprintf(ifile, "included\n");
-
-  fprintf(ifile, "Power bus bars are      : ");
-  if (!IncludePowerbars) fprintf(ifile, "NOT ");
-  fprintf(ifile, "included\n");
-
-  fprintf(ifile, "asics are               : ");
-  if (!IncludeAsics) fprintf(ifile, "NOT ");
-  fprintf(ifile, "included\n");
-
-  fprintf(ifile, "front-end boards are    : ");
-  if (!IncludeFebs) fprintf(ifile, "NOT ");
-  fprintf(ifile, "included\n");
-
-  fprintf(ifile, "GBTX readout boards are : ");
-  if (!IncludeRobs) fprintf(ifile, "NOT ");
-  fprintf(ifile, "included\n");
-
-  fprintf(ifile, "\n");
-
-
-  // module statistics
-  //  fprintf(ifile,"#\n##   modules\n#\n\n");
-  //  fprintf(ifile,"number of modules per type and layer:\n");
-  fprintf(ifile, "# modules\n");
-
-  for (Int_t iModule = 1; iModule <= NofModuleTypes; iModule++)
-    fprintf(ifile, "     mod%1d", iModule);
-  fprintf(ifile, "    total");
-
-  fprintf(ifile, "\n------------------------------------------------------------------"
-                 "---------------\n");
-  for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++)
-    if (ShowLayer[iLayer]) {
-      for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-        fprintf(ifile, " %8d", ModuleStats[iLayer][iModule]);
-        total_modules[iModule] += ModuleStats[iLayer][iModule];  // sum up modules across layers
-      }
-      fprintf(ifile, "            layer %2d\n", PlaneId[iLayer]);
-    }
-  fprintf(ifile, "\n------------------------------------------------------------------"
-                 "---------------\n");
-
-  // total statistics
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    fprintf(ifile, " %8d", total_modules[iModule]);
-    total_modules[NofModuleTypes] += total_modules[iModule];
-  }
-  fprintf(ifile, " %8d", total_modules[NofModuleTypes]);
-  fprintf(ifile, "   number of modules\n");
-
-  //------------------------------------------------------------------------------
-
-  // number of FEBs
-  //  fprintf(ifile,"\n#\n##   febs\n#\n\n");
-  fprintf(ifile, "# febs\n");
-
-  fprintf(ifile, " ");
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    if ((AsicsPerFeb[iModule] / 100) == 3) fprintf(ifile, "%8du", FebsPerModule[iModule]);
-    else if ((AsicsPerFeb[iModule] / 100) == 2)
-      fprintf(ifile, "%8ds", FebsPerModule[iModule]);
-    else
-      fprintf(ifile, "%8d ", FebsPerModule[iModule]);
-  }
-  fprintf(ifile, "           FEBs per module\n");
-
-  // FEB total per type
-  total_febs[NofModuleTypes] = 0;  // reset sum to 0
-  fprintf(ifile, " ");
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    if ((AsicsPerFeb[iModule] / 100) == 3) {
-      total_febs[iModule] = total_modules[iModule] * FebsPerModule[iModule];
-      fprintf(ifile, "%8du", total_febs[iModule]);
-      total_febs[NofModuleTypes] += total_febs[iModule];
-    }
-    else
-      fprintf(ifile, "         ");
-  }
-  fprintf(ifile, "%8d", total_febs[NofModuleTypes]);
-  fprintf(ifile, "   ultimate  FEBs\n");
-
-  // FEB total per type
-  total_febs[NofModuleTypes] = 0;  // reset sum to 0
-  fprintf(ifile, " ");
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    if ((AsicsPerFeb[iModule] / 100) == 2) {
-      total_febs[iModule] = total_modules[iModule] * FebsPerModule[iModule];
-      fprintf(ifile, "%8ds", total_febs[iModule]);
-      total_febs[NofModuleTypes] += total_febs[iModule];
-    }
-    else
-      fprintf(ifile, "         ");
-  }
-  fprintf(ifile, "%8d", total_febs[NofModuleTypes]);
-  fprintf(ifile, "   super     FEBs\n");
-
-  // FEB total per type
-  total_febs[NofModuleTypes] = 0;  // reset sum to 0
-  fprintf(ifile, " ");
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    if ((AsicsPerFeb[iModule] / 100) == 1) {
-      total_febs[iModule] = total_modules[iModule] * FebsPerModule[iModule];
-      fprintf(ifile, "%8d ", total_febs[iModule]);
-      total_febs[NofModuleTypes] += total_febs[iModule];
-    }
-    else
-      fprintf(ifile, "         ");
-  }
-  fprintf(ifile, "%8d", total_febs[NofModuleTypes]);
-  fprintf(ifile, "   regular   FEBs\n");
-
-  // FEB total over all types
-  total_febs[NofModuleTypes] = 0;  // reset sum to 0
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    total_febs[iModule] = total_modules[iModule] * FebsPerModule[iModule];
-    fprintf(ifile, " %8d", total_febs[iModule]);
-    total_febs[NofModuleTypes] += total_febs[iModule];
-  }
-  fprintf(ifile, " %8d", total_febs[NofModuleTypes]);
-  fprintf(ifile, "   number of FEBs\n");
-
-  //------------------------------------------------------------------------------
-
-  // number of ASICs
-  //  fprintf(ifile,"\n#\n##   asics\n#\n\n");
-  fprintf(ifile, "# asics\n");
-
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    fprintf(ifile, " %8d", AsicsPerFeb[iModule] % 100);
-  }
-  fprintf(ifile, "            ASICs per FEB\n");
-
-  // ASICs per module
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    asics_per_module[iModule] = FebsPerModule[iModule] * (AsicsPerFeb[iModule] % 100);
-    fprintf(ifile, " %8d", asics_per_module[iModule]);
-  }
-  fprintf(ifile, "            ASICs per module\n");
-
-  // ASICs per module type
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    total_asics[iModule] = total_febs[iModule] * (AsicsPerFeb[iModule] % 100);
-    fprintf(ifile, " %8d", total_asics[iModule]);
-    total_asics[NofModuleTypes] += total_asics[iModule];
-  }
-  fprintf(ifile, " %8d", total_asics[NofModuleTypes]);
-  fprintf(ifile, "   number of ASICs\n");
-
-  //------------------------------------------------------------------------------
-
-  // number of GBTXs
-  //  fprintf(ifile,"\n#\n##   asics\n#\n\n");
-  fprintf(ifile, "# gbtx\n");
-
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    fprintf(ifile, " %8d", GbtxPerModule[iModule]);
-  }
-  fprintf(ifile, "            GBTXs per module\n");
-
-  // GBTXs per module type
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    total_gbtx[iModule] = total_modules[iModule] * GbtxPerModule[iModule];
-    fprintf(ifile, " %8d", total_gbtx[iModule]);
-    total_gbtx[NofModuleTypes] += total_gbtx[iModule];
-  }
-  fprintf(ifile, " %8d", total_gbtx[NofModuleTypes]);
-  fprintf(ifile, "   number of GBTXs\n");
-
-  // GBTX ROB types per module type
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    fprintf(ifile, " %8d", RobTypeOnModule[iModule]);
-  }
-  fprintf(ifile, "            GBTX ROB types on module\n");
-
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    if ((RobTypeOnModule[iModule] % 10) == 7) total_rob7[iModule]++;
-    if ((RobTypeOnModule[iModule] / 10 % 10) == 7) total_rob7[iModule]++;
-    if ((RobTypeOnModule[iModule] / 100) == 7) total_rob7[iModule]++;
-
-    if ((RobTypeOnModule[iModule] % 10) == 5) total_rob5[iModule]++;
-    if ((RobTypeOnModule[iModule] / 10 % 10) == 5) total_rob5[iModule]++;
-    if ((RobTypeOnModule[iModule] / 100) == 5) total_rob5[iModule]++;
-
-    if ((RobTypeOnModule[iModule] % 10) == 3) total_rob3[iModule]++;
-    if ((RobTypeOnModule[iModule] / 10 % 10) == 3) total_rob3[iModule]++;
-    if ((RobTypeOnModule[iModule] / 100 % 10) == 3) total_rob3[iModule]++;
-    if ((RobTypeOnModule[iModule] / 1000 % 10) == 3) total_rob3[iModule]++;
-    if ((RobTypeOnModule[iModule] / 10000 % 10) == 3) total_rob3[iModule]++;
-    if ((RobTypeOnModule[iModule] / 100000) == 3) total_rob3[iModule]++;
-  }
-
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    total_rob7[iModule] *= total_modules[iModule];
-    fprintf(ifile, " %8d", total_rob7[iModule]);
-    total_rob7[NofModuleTypes] += total_rob7[iModule];
-  }
-  fprintf(ifile, " %8d", total_rob7[NofModuleTypes]);
-  fprintf(ifile, "   number of GBTX ROB7\n");
-
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    total_rob5[iModule] *= total_modules[iModule];
-    fprintf(ifile, " %8d", total_rob5[iModule]);
-    total_rob5[NofModuleTypes] += total_rob5[iModule];
-  }
-  fprintf(ifile, " %8d", total_rob5[NofModuleTypes]);
-  fprintf(ifile, "   number of GBTX ROB5\n");
-
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    total_rob3[iModule] *= total_modules[iModule];
-    fprintf(ifile, " %8d", total_rob3[iModule]);
-    total_rob3[NofModuleTypes] += total_rob3[iModule];
-  }
-  fprintf(ifile, " %8d", total_rob3[NofModuleTypes]);
-  fprintf(ifile, "   number of GBTX ROB3\n");
-
-  //------------------------------------------------------------------------------
-  fprintf(ifile, "# e-links\n");
-
-  // e-links used
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++)
-    fprintf(ifile, " %8d", asics_per_module[iModule] * 2);
-  fprintf(ifile, " %8d", total_asics[NofModuleTypes] * 2);
-  fprintf(ifile, "   e-links used\n");
-
-  // e-links available
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++)
-    fprintf(ifile, " %8d", GbtxPerModule[iModule] * 14);
-  fprintf(ifile, " %8d", total_gbtx[NofModuleTypes] * 14);
-  fprintf(ifile, "   e-links available\n");
-
-  // e-link efficiency
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    if (total_gbtx[iModule] != 0)
-      fprintf(ifile, " %7.1f%%", (float) total_asics[iModule] * 2 / (total_gbtx[iModule] * 14) * 100);
-    else
-      fprintf(ifile, "        -");
-  }
-  if (total_gbtx[NofModuleTypes] != 0)
-    fprintf(ifile, " %7.1f%%", (float) total_asics[NofModuleTypes] * 2 / (total_gbtx[NofModuleTypes] * 14) * 100);
-  fprintf(ifile, "   e-link efficiency\n\n");
-
-  //------------------------------------------------------------------------------
-
-  // number of channels
-  fprintf(ifile, "# channels\n");
-
-  // channels per module
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    if ((AsicsPerFeb[iModule] % 100) == 16) {
-      channels_per_feb[iModule]    = 80 * 6;  // rows  // 84, if 63 of 64 ch used
-      channels_per_module[iModule] = channels_per_feb[iModule] * FebsPerModule[iModule];
-    }
-    if ((AsicsPerFeb[iModule] % 100) == 15) {
-      channels_per_feb[iModule]    = 80 * 6;  // rows
-      channels_per_module[iModule] = channels_per_feb[iModule] * FebsPerModule[iModule];
-    }
-    if ((AsicsPerFeb[iModule] % 100) == 10) {
-      //      channels_per_feb[iModule] =  80 * 4;   // rows
-      channels_per_feb[iModule]    = (AsicsPerFeb[iModule] % 100) * 16;  // electronic channels
-      channels_per_module[iModule] = channels_per_feb[iModule] * FebsPerModule[iModule];
-    }
-    if ((AsicsPerFeb[iModule] % 100) == 5) {
-      channels_per_feb[iModule]    = 80 * 2;  // rows
-      channels_per_module[iModule] = channels_per_feb[iModule] * FebsPerModule[iModule];
-    }
-
-    if ((AsicsPerFeb[iModule] % 100) == 8) {
-      channels_per_feb[iModule]    = 128 * 2;  // rows
-      channels_per_module[iModule] = channels_per_feb[iModule] * FebsPerModule[iModule];
-    }
-  }
-
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++)
-    fprintf(ifile, " %8d", channels_per_module[iModule]);
-  fprintf(ifile, "            channels per module\n");
-
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++)
-    fprintf(ifile, " %8d", channels_per_feb[iModule]);
-  fprintf(ifile, "            channels per feb\n");
-
-  // channels used
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    total_channels[iModule] = channels_per_module[iModule] * total_modules[iModule];
-    fprintf(ifile, " %8d", total_channels[iModule]);
-    total_channels[NofModuleTypes] += total_channels[iModule];
-  }
-  fprintf(ifile, " %8d", total_channels[NofModuleTypes]);
-  fprintf(ifile, "   channels used\n");
-
-  // channels available
-  fprintf(ifile, " ");
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) {
-    if ((AsicsPerFeb[iModule] / 100) == 4)  // FASP case
-    {
-      fprintf(ifile, "%8dF", total_asics[iModule] * 16);
-      total_channels_u += total_asics[iModule] * 16;
-    }
-    else if ((AsicsPerFeb[iModule] / 100) == 3) {
-      fprintf(ifile, "%8du", total_asics[iModule] * 32);
-      total_channels_u += total_asics[iModule] * 32;
-    }
-    else if ((AsicsPerFeb[iModule] / 100) == 2) {
-      fprintf(ifile, "%8ds", total_asics[iModule] * 32);
-      total_channels_s += total_asics[iModule] * 32;
-    }
-    else {
-      fprintf(ifile, "%8d ", total_asics[iModule] * 32);
-      total_channels_r += total_asics[iModule] * 32;
-    }
-  }
-  fprintf(ifile, "%8d", total_asics[NofModuleTypes] * 32);
-  fprintf(ifile, "   channels available\n");
-
-  // channel ratio for u,s,r density
-  fprintf(ifile, " ");
-  fprintf(ifile, "%7.1f%%u", (float) total_channels_u / (total_asics[NofModuleTypes] * 32) * 100);
-  fprintf(ifile, "%7.1f%%s", (float) total_channels_s / (total_asics[NofModuleTypes] * 32) * 100);
-  fprintf(ifile, "%7.1f%%r", (float) total_channels_r / (total_asics[NofModuleTypes] * 32) * 100);
-  fprintf(ifile, "                                                        channel ratio\n");
-
-  fprintf(ifile, "\n");
-  fprintf(ifile, "%8.1f%%   channel efficiency\n",
-          1. * total_channels[NofModuleTypes] / (total_asics[NofModuleTypes] * 32) * 100);
-
-  //------------------------------------------------------------------------------
-
-  // total surface of TRD
-  for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++)
-    if (iModule <= 3) {
-      total_surface += total_modules[iModule] * DetectorSizeX[0] / 100 * DetectorSizeY[0] / 100;
-      total_actarea += total_modules[iModule] * (DetectorSizeX[0] - 2 * FrameWidth[0]) / 100
-                       * (DetectorSizeY[0] - 2 * FrameWidth[0]) / 100;
-    }
-    else {
-      total_surface += total_modules[iModule] * DetectorSizeX[1] / 100 * DetectorSizeY[1] / 100;
-      total_actarea += total_modules[iModule] * (DetectorSizeX[1] - 2 * FrameWidth[1]) / 100
-                       * (DetectorSizeY[1] - 2 * FrameWidth[1]) / 100;
-    }
-  fprintf(ifile, "\n");
-
-  // summary
-  fprintf(ifile, "%7.2f m2      total surface    \n", total_surface);
-  fprintf(ifile, "%7.2f m2      total active area\n", total_actarea);
-  fprintf(ifile, "%7.2f m3      total gas volume \n",
-          total_actarea * gas_thickness / 100);  // convert cm to m for thickness
-
-  fprintf(ifile, "%7.2f cm2/ch  average channel size\n", 100. * 100 * total_actarea / total_channels[NofModuleTypes]);
-  fprintf(ifile, "%7.2f ch/m2   channels per m2 active area\n", 1. * total_channels[NofModuleTypes] / total_actarea);
-  fprintf(ifile, "\n");
-
-  // gas volume position
-  fprintf(ifile, "# gas volume position\n");
-  for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++)
-    if (ShowLayer[iLayer])
-      fprintf(ifile, "%10.4f cm   position of gas volume - layer %2d\n",
-              LayerPosition[iLayer] + LayerThickness / 2. + gas_position, PlaneId[iLayer]);
-  fprintf(ifile, "\n");
-
-  // angles
-  fprintf(ifile, "# angles of acceptance\n");
-
-  for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++)
-    if (ShowLayer[iLayer]) {
-      if (iLayer <= 5) {
-        //        fprintf(ifile,"y %10.4f cm   x %10.4f cm\n", 2.5 * DetectorSizeY[1], 3.5 * DetectorSizeX[1]);
-        Int_t type(LayerType[iLayer] / 10);
-        yangle = atan(2.5 * DetectorSizeY[type] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position))
-                 * 180. / acos(-1.);
-        xangle = atan(3.5 * DetectorSizeX[type] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position))
-                 * 180. / acos(-1.);
-      }
-      if ((iLayer > 5) && (iLayer < 8)) {
-        //        fprintf(ifile,"y %10.4f cm   x %10.4f cm\n", 3.5 * DetectorSizeY[1], 4.5 * DetectorSizeX[1]);
-        yangle = atan(3.5 * DetectorSizeY[1] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180.
-                 / acos(-1.);
-        xangle = atan(4.5 * DetectorSizeX[1] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180.
-                 / acos(-1.);
-      }
-      if ((iLayer >= 8) && (iLayer < 10)) {
-        //        fprintf(ifile,"y %10.4f cm   x %10.4f cm\n", 4.5 * DetectorSizeY[1], 5.5 * DetectorSizeX[1]);
-        yangle = atan(4.5 * DetectorSizeY[1] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180.
-                 / acos(-1.);
-        xangle = atan(5.5 * DetectorSizeX[1] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180.
-                 / acos(-1.);
-      }
-      fprintf(ifile, "v: %5.2f deg, h: %5.2f deg - vertical/horizontal - layer %2d\n", yangle, xangle, PlaneId[iLayer]);
-    }
-  fprintf(ifile, "\n");
-
-  // aperture
-  fprintf(ifile, "# inner aperture\n");
-
-  for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++)
-    if (ShowLayer[iLayer]) {
-      if (iLayer <= 5) {
-        //        fprintf(ifile,"y %10.4f cm   x %10.4f cm\n", 2.5 * DetectorSizeY[1], 3.5 * DetectorSizeX[1]);
-        yangle = atan(0.5 * DetectorSizeY[0] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180.
-                 / acos(-1.);
-        xangle = atan(0.5 * DetectorSizeX[0] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180.
-                 / acos(-1.);
-      }
-      if ((iLayer > 5) && (iLayer < 8)) {
-        //        fprintf(ifile,"y %10.4f cm   x %10.4f cm\n", 3.5 * DetectorSizeY[1], 4.5 * DetectorSizeX[1]);
-        yangle = atan(0.5 * DetectorSizeY[0] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180.
-                 / acos(-1.);
-        xangle = atan(0.5 * DetectorSizeX[0] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180.
-                 / acos(-1.);
-      }
-      if ((iLayer >= 8) && (iLayer < 10)) {
-        //        fprintf(ifile,"y %10.4f cm   x %10.4f cm\n", 4.5 * DetectorSizeY[1], 5.5 * DetectorSizeX[1]);
-        yangle = atan(0.5 * DetectorSizeY[0] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180.
-                 / acos(-1.);
-        xangle = atan(0.5 * DetectorSizeX[0] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180.
-                 / acos(-1.);
-      }
-      fprintf(ifile, "v: %5.2f deg, h: %5.2f deg - vertical/horizontal - layer %2d\n", yangle, xangle, PlaneId[iLayer]);
-    }
-  fprintf(ifile, "\n");
-
-  fclose(ifile);
-}
-
-
-void create_materials_from_media_file()
-{
-  // Use the FairRoot geometry interface to load the media which are already defined
-  FairGeoLoader* geoLoad    = new FairGeoLoader("TGeo", "FairGeoLoader");
-  FairGeoInterface* geoFace = geoLoad->getGeoInterface();
-  TString geoPath           = gSystem->Getenv("VMCWORKDIR");
-  TString medFile           = geoPath + "/geometry/media.geo";
-  geoFace->setMediaFile(medFile);
-  geoFace->readMedia();
-
-  // Read the required media and create them in the GeoManager
-  FairGeoMedia* geoMedia   = geoFace->getMedia();
-  FairGeoBuilder* geoBuild = geoLoad->getGeoBuilder();
-
-  FairGeoMedium* air       = geoMedia->getMedium(KeepingVolumeMedium);
-  FairGeoMedium* pefoam20  = geoMedia->getMedium(RadiatorVolumeMedium);
-  FairGeoMedium* G10       = geoMedia->getMedium(LatticeVolumeMedium);
-  FairGeoMedium* kapton    = geoMedia->getMedium(KaptonVolumeMedium);
-  FairGeoMedium* trdGas    = geoMedia->getMedium(GasVolumeMedium);
-  FairGeoMedium* copper    = geoMedia->getMedium(PadCopperVolumeMedium);
-  FairGeoMedium* carbon    = geoMedia->getMedium(CarbonVolumeMedium);
-  FairGeoMedium* honeycomb = geoMedia->getMedium(HoneycombVolumeMedium);
-  FairGeoMedium* aluminium = geoMedia->getMedium(AluminiumVolumeMedium);
-
-  //  FairGeoMedium* goldCoatedCopper = geoMedia->getMedium("goldcoatedcopper");
-  //  FairGeoMedium* polypropylene    = geoMedia->getMedium("polypropylene");
-  //  FairGeoMedium* mylar            = geoMedia->getMedium("mylar");
-
-  geoBuild->createMedium(air);
-  geoBuild->createMedium(pefoam20);
-  geoBuild->createMedium(trdGas);
-  geoBuild->createMedium(honeycomb);
-  geoBuild->createMedium(carbon);
-  geoBuild->createMedium(G10);
-  geoBuild->createMedium(copper);
-  geoBuild->createMedium(kapton);
-  geoBuild->createMedium(aluminium);
-
-  //  geoBuild->createMedium(goldCoatedCopper);
-  //  geoBuild->createMedium(polypropylene);
-  //  geoBuild->createMedium(mylar);
-}
-
-TGeoVolume* create_trd_module_type(Int_t moduleType)
-{
-  Int_t type           = ModuleType[moduleType - 1];
-  Double_t sizeX       = DetectorSizeX[type];
-  Double_t sizeY       = DetectorSizeY[type];
-  Double_t frameWidth  = FrameWidth[type];
-  Double_t activeAreaX = sizeX - 2 * frameWidth;
-  Double_t activeAreaY = sizeY - 2 * frameWidth;
-
-  TGeoMedium* keepVolMed      = gGeoMan->GetMedium(KeepingVolumeMedium);
-  TGeoMedium* radVolMed       = gGeoMan->GetMedium(RadiatorVolumeMedium);
-  TGeoMedium* latticeVolMed   = gGeoMan->GetMedium(LatticeVolumeMedium);
-  TGeoMedium* kaptonVolMed    = gGeoMan->GetMedium(KaptonVolumeMedium);
-  TGeoMedium* gasVolMed       = gGeoMan->GetMedium(GasVolumeMedium);
-  TGeoMedium* padcopperVolMed = gGeoMan->GetMedium(PadCopperVolumeMedium);
-  TGeoMedium* padpcbVolMed    = gGeoMan->GetMedium(PadPcbVolumeMedium);
-  TGeoMedium* honeycombVolMed = gGeoMan->GetMedium(HoneycombVolumeMedium);
-  TGeoMedium* carbonVolMed    = gGeoMan->GetMedium(CarbonVolumeMedium);
-  //  TGeoMedium* mylarVolMed       = gGeoMan->GetMedium(MylarVolumeMedium);
-  //  TGeoMedium* electronicsVolMed = gGeoMan->GetMedium(ElectronicsVolumeMedium);
-  TGeoMedium* frameVolMed    = gGeoMan->GetMedium(FrameVolumeMedium);
-  TGeoMedium* aluledgeVolMed = gGeoMan->GetMedium(AluLegdeVolumeMedium);
-  TGeoMedium* febVolMed      = gGeoMan->GetMedium(FebVolumeMedium);
-  TGeoMedium* asicVolMed     = gGeoMan->GetMedium(AsicVolumeMedium);
-  //  TGeoMedium* aluminiumVolMed   = gGeoMan->GetMedium(AluminiumVolumeMedium);
-
-  TString name       = Form("module%d", moduleType);
-  TGeoVolume* module = new TGeoVolumeAssembly(name);
-
-
-  if (IncludeRadiator) {
-    // Radiator
-    //   TGeoBBox* trd_radiator = new TGeoBBox("", activeAreaX /2., activeAreaY /2., radiator_thickness /2.);
-    TGeoBBox* trd_radiator     = new TGeoBBox("trd_radiator", sizeX / 2., sizeY / 2., radiator_thickness / 2.);
-    TGeoVolume* trdmod1_radvol = new TGeoVolume("radiator", trd_radiator, radVolMed);
-    //     TGeoVolume* trdmod1_radvol = new TGeoVolume(Form("module%d_radiator", moduleType), trd_radiator, radVolMed);
-    //     TGeoVolume* trdmod1_radvol = new TGeoVolume(Form("trd1mod%dradiator", moduleType), trd_radiator, radVolMed);
-    trdmod1_radvol->SetLineColor(kBlue);
-    trdmod1_radvol->SetTransparency(70);  // (60);  // (70);  // set transparency for the TRD radiator
-    TGeoTranslation* trd_radiator_trans = new TGeoTranslation("", 0., 0., radiator_position);
-    module->AddNode(trdmod1_radvol, 1, trd_radiator_trans);
-  }
-
-  // Lattice grid
-  if (IncludeLattice) {
-
-    if (type == 0)  // inner modules
-    {
-      //     printf("lattice type %d\n", type);
-      // drift window - lattice grid - sprossenfenster
-      TGeoBBox* trd_lattice_mod0_ho = new TGeoBBox("trd_lattice_mod0_ho", sizeX / 2., lattice_o_width[type] / 2.,
-                                                   lattice_thickness / 2.);  // horizontal outer
-      TGeoBBox* trd_lattice_mod0_hi =
-        new TGeoBBox("trd_lattice_mod0_hi", sizeX / 2. - lattice_o_width[type], lattice_i_width[type] / 2.,
-                     lattice_thickness / 2.);  // horizontal inner
-      TGeoBBox* trd_lattice_mod0_vo =
-        new TGeoBBox("trd_lattice_mod0_vo", lattice_o_width[type] / 2., sizeX / 2. - lattice_o_width[type],
-                     lattice_thickness / 2.);  // vertical outer
-      TGeoBBox* trd_lattice_mod0_vi = new TGeoBBox("trd_lattice_mod0_vi", lattice_i_width[type] / 2.,
-                                                   0.20 * activeAreaY / 2. - lattice_i_width[type] / 2.,
-                                                   lattice_thickness / 2.);  // vertical inner
-      TGeoBBox* trd_lattice_mod0_vb = new TGeoBBox("trd_lattice_mod0_vb", lattice_i_width[type] / 2.,
-                                                   0.20 * activeAreaY / 2. - lattice_i_width[type] / 4.,
-                                                   lattice_thickness / 2.);  // vertical border
-
-      TGeoVolume* trd_lattice_mod0_vol_ho = new TGeoVolume("lattice0ho", trd_lattice_mod0_ho, latticeVolMed);
-      TGeoVolume* trd_lattice_mod0_vol_hi = new TGeoVolume("lattice0hi", trd_lattice_mod0_hi, latticeVolMed);
-      TGeoVolume* trd_lattice_mod0_vol_vo = new TGeoVolume("lattice0vo", trd_lattice_mod0_vo, latticeVolMed);
-      TGeoVolume* trd_lattice_mod0_vol_vi = new TGeoVolume("lattice0vi", trd_lattice_mod0_vi, latticeVolMed);
-      TGeoVolume* trd_lattice_mod0_vol_vb = new TGeoVolume("lattice0vb", trd_lattice_mod0_vb, latticeVolMed);
-
-      trd_lattice_mod0_vol_ho->SetLineColor(kYellow);  // kBlue);
-      trd_lattice_mod0_vol_vo->SetLineColor(kYellow);  // kOrange);
-      trd_lattice_mod0_vol_hi->SetLineColor(kYellow);  // kRed);
-      trd_lattice_mod0_vol_vi->SetLineColor(kYellow);  // kWhite);
-      trd_lattice_mod0_vol_vb->SetLineColor(kYellow);
-
-      TGeoTranslation* tv010 =
-        new TGeoTranslation("tv010", 0., (1.00 * activeAreaY / 2. + lattice_o_width[type] / 2.), 0);
-      TGeoTranslation* tv015 =
-        new TGeoTranslation("tv015", 0., -(1.00 * activeAreaY / 2. + lattice_o_width[type] / 2.), 0);
-
-      TGeoTranslation* th020 =
-        new TGeoTranslation("th020", (1.00 * activeAreaX / 2. + lattice_o_width[type] / 2.), 0., 0);
-      TGeoTranslation* th025 =
-        new TGeoTranslation("th025", -(1.00 * activeAreaX / 2. + lattice_o_width[type] / 2.), 0., 0);
-
-      Double_t hypos0[4] = {(0.60 * activeAreaY / 2.), (0.20 * activeAreaY / 2.), -(0.20 * activeAreaY / 2.),
-                            -(0.60 * activeAreaY / 2.)};
-
-      Double_t vxpos0[4] = {(0.60 * activeAreaX / 2.), (0.20 * activeAreaX / 2.), -(0.20 * activeAreaX / 2.),
-                            -(0.60 * activeAreaX / 2.)};
-
-      Double_t vypos0[5] = {(0.80 * activeAreaY / 2. + lattice_i_width[type] / 4.), (0.40 * activeAreaY / 2.),
-                            (0.00 * activeAreaY / 2.), -(0.40 * activeAreaY / 2.),
-                            -(0.80 * activeAreaY / 2. + lattice_i_width[type] / 4.)};
-
-      //       TGeoVolumeAssembly* trdmod0_lattice = new TGeoVolumeAssembly("mod0lattice"); // volume for lattice grid
-
-      TGeoBBox* trd_lattice_mod0  = new TGeoBBox("trd_lattice_mod0", sizeX / 2., sizeY / 2., lattice_thickness / 2.);
-      TGeoVolume* trdmod0_lattice = new TGeoVolume("lat_grid_mod0", trd_lattice_mod0, keepVolMed);
-
-      //       trdmod0_lattice->SetLineColor(kGreen);  // set color for keeping volume
-
-      // outer frame
-      trdmod0_lattice->AddNode(trd_lattice_mod0_vol_ho, 1, tv010);
-      trdmod0_lattice->AddNode(trd_lattice_mod0_vol_ho, 2, tv015);
-
-      trdmod0_lattice->AddNode(trd_lattice_mod0_vol_vo, 3, th020);
-      trdmod0_lattice->AddNode(trd_lattice_mod0_vol_vo, 4, th025);
-
-      // lattice piece number
-      Int_t lat0_no = 5;
-
-      // horizontal bars
-      for (Int_t y = 0; y < 4; y++) {
-        TGeoTranslation* t0xy = new TGeoTranslation("", 0, hypos0[y], 0);
-        trdmod0_lattice->AddNode(trd_lattice_mod0_vol_hi, lat0_no, t0xy);
-        lat0_no++;
-      }
-
-      // vertical bars
-      for (Int_t x = 0; x < 4; x++)
-        for (Int_t y = 0; y < 5; y++) {
-          TGeoTranslation* t0xy = new TGeoTranslation("", vxpos0[x], vypos0[y], 0);
-          if ((y == 0) || (y == 4)) trdmod0_lattice->AddNode(trd_lattice_mod0_vol_vb, lat0_no, t0xy);  // border piece
-          else
-            trdmod0_lattice->AddNode(trd_lattice_mod0_vol_vi, lat0_no, t0xy);  // middle piece
-          lat0_no++;
-        }
-
-      // add lattice to module
-      TGeoTranslation* trd_lattice_trans = new TGeoTranslation("", 0., 0., lattice_position);
-      module->AddNode(trdmod0_lattice, 1, trd_lattice_trans);
-    }
-
-    else if (type == 1)  // outer modules
-    {
-      //     printf("lattice type %d\n", type);
-      // drift window - lattice grid - sprossenfenster
-      TGeoBBox* trd_lattice_mod1_ho = new TGeoBBox("trd_lattice_mod1_ho", sizeX / 2., lattice_o_width[type] / 2.,
-                                                   lattice_thickness / 2.);  // horizontal outer
-      TGeoBBox* trd_lattice_mod1_hi =
-        new TGeoBBox("trd_lattice_mod1_hi", sizeX / 2. - lattice_o_width[type], lattice_i_width[type] / 2.,
-                     lattice_thickness / 2.);  // horizontal inner
-      TGeoBBox* trd_lattice_mod1_vo =
-        new TGeoBBox("trd_lattice_mod1_vo", lattice_o_width[type] / 2., sizeX / 2. - lattice_o_width[type],
-                     lattice_thickness / 2.);  // vertical outer
-      TGeoBBox* trd_lattice_mod1_vi = new TGeoBBox("trd_lattice_mod1_vi", lattice_i_width[type] / 2.,
-                                                   0.125 * activeAreaY / 2. - lattice_i_width[type] / 2.,
-                                                   lattice_thickness / 2.);  // vertical inner
-      TGeoBBox* trd_lattice_mod1_vb = new TGeoBBox("trd_lattice_mod1_vb", lattice_i_width[type] / 2.,
-                                                   0.125 * activeAreaY / 2. - lattice_i_width[type] / 4.,
-                                                   lattice_thickness / 2.);  // vertical border
-
-      TGeoVolume* trd_lattice_mod1_vol_ho = new TGeoVolume("lattice1ho", trd_lattice_mod1_ho, latticeVolMed);
-      TGeoVolume* trd_lattice_mod1_vol_hi = new TGeoVolume("lattice1hi", trd_lattice_mod1_hi, latticeVolMed);
-      TGeoVolume* trd_lattice_mod1_vol_vo = new TGeoVolume("lattice1vo", trd_lattice_mod1_vo, latticeVolMed);
-      TGeoVolume* trd_lattice_mod1_vol_vi = new TGeoVolume("lattice1vi", trd_lattice_mod1_vi, latticeVolMed);
-      TGeoVolume* trd_lattice_mod1_vol_vb = new TGeoVolume("lattice1vb", trd_lattice_mod1_vb, latticeVolMed);
-
-      trd_lattice_mod1_vol_ho->SetLineColor(kYellow);  // kBlue);
-      trd_lattice_mod1_vol_vo->SetLineColor(kYellow);  // kOrange);
-      trd_lattice_mod1_vol_hi->SetLineColor(kYellow);  // kRed);
-      trd_lattice_mod1_vol_vi->SetLineColor(kYellow);  // kWhite);
-      trd_lattice_mod1_vol_vb->SetLineColor(kYellow);
-
-      TGeoTranslation* tv110 =
-        new TGeoTranslation("tv110", 0., (1.00 * activeAreaY / 2. + lattice_o_width[type] / 2.), 0);
-      TGeoTranslation* tv118 =
-        new TGeoTranslation("tv118", 0., -(1.00 * activeAreaY / 2. + lattice_o_width[type] / 2.), 0);
-
-      TGeoTranslation* th120 =
-        new TGeoTranslation("th120", (1.00 * activeAreaX / 2. + lattice_o_width[type] / 2.), 0., 0);
-      TGeoTranslation* th128 =
-        new TGeoTranslation("th128", -(1.00 * activeAreaX / 2. + lattice_o_width[type] / 2.), 0., 0);
-
-      Double_t hypos1[7] = {(0.75 * activeAreaY / 2.), (0.50 * activeAreaY / 2.),  (0.25 * activeAreaY / 2.),
-                            (0.00 * activeAreaY / 2.), -(0.25 * activeAreaY / 2.), -(0.50 * activeAreaY / 2.),
-                            -(0.75 * activeAreaY / 2.)};
-
-      Double_t vxpos1[7] = {(0.75 * activeAreaX / 2.), (0.50 * activeAreaX / 2.),  (0.25 * activeAreaX / 2.),
-                            (0.00 * activeAreaX / 2.), -(0.25 * activeAreaX / 2.), -(0.50 * activeAreaX / 2.),
-                            -(0.75 * activeAreaX / 2.)};
-
-      Double_t vypos1[8] = {(0.875 * activeAreaY / 2. + lattice_i_width[type] / 4.),
-                            (0.625 * activeAreaY / 2.),
-                            (0.375 * activeAreaY / 2.),
-                            (0.125 * activeAreaY / 2.),
-                            -(0.125 * activeAreaY / 2.),
-                            -(0.375 * activeAreaY / 2.),
-                            -(0.625 * activeAreaY / 2.),
-                            -(0.875 * activeAreaY / 2. + lattice_i_width[type] / 4.)};
-
-      //       TGeoVolumeAssembly* trdmod1_lattice = new TGeoVolumeAssembly("mod1lattice"); // volume for lattice grid
-
-      TGeoBBox* trd_lattice_mod1  = new TGeoBBox("trd_lattice_mod1", sizeX / 2., sizeY / 2., lattice_thickness / 2.);
-      TGeoVolume* trdmod1_lattice = new TGeoVolume("lat_grid_mod1", trd_lattice_mod1, keepVolMed);
-
-      //       trdmod1_lattice->SetLineColor(kGreen);  // set color for keeping volume
-
-      // outer frame
-      trdmod1_lattice->AddNode(trd_lattice_mod1_vol_ho, 1, tv110);
-      trdmod1_lattice->AddNode(trd_lattice_mod1_vol_ho, 2, tv118);
-
-      trdmod1_lattice->AddNode(trd_lattice_mod1_vol_vo, 3, th120);
-      trdmod1_lattice->AddNode(trd_lattice_mod1_vol_vo, 4, th128);
-
-      // lattice piece number
-      Int_t lat1_no = 5;
-
-      // horizontal bars
-      for (Int_t y = 0; y < 7; y++) {
-        TGeoTranslation* t1xy = new TGeoTranslation("", 0, hypos1[y], 0);
-        trdmod1_lattice->AddNode(trd_lattice_mod1_vol_hi, lat1_no, t1xy);
-        lat1_no++;
-      }
-
-      // vertical bars
-      for (Int_t x = 0; x < 7; x++)
-        for (Int_t y = 0; y < 8; y++) {
-          TGeoTranslation* t1xy = new TGeoTranslation("", vxpos1[x], vypos1[y], 0);
-          if ((y == 0) || (y == 7)) trdmod1_lattice->AddNode(trd_lattice_mod1_vol_vb, lat1_no, t1xy);  // border piece
-          else
-            trdmod1_lattice->AddNode(trd_lattice_mod1_vol_vi, lat1_no, t1xy);  // middle piece
-          lat1_no++;
-        }
-
-      // add lattice to module
-      TGeoTranslation* trd_lattice_trans = new TGeoTranslation("", 0., 0., lattice_position);
-      module->AddNode(trdmod1_lattice, 1, trd_lattice_trans);
-    }
-
-  }  // with lattice grid
-
-  if (IncludeKaptonFoil) {
-    // Kapton Foil
-    TGeoBBox* trd_kapton          = new TGeoBBox("trd_kapton", sizeX / 2., sizeY / 2., kapton_thickness / 2.);
-    TGeoVolume* trdmod1_kaptonvol = new TGeoVolume("kaptonfoil", trd_kapton, kaptonVolMed);
-    //   TGeoVolume* trdmod1_kaptonvol = new TGeoVolume(Form("module%d_kaptonfoil", moduleType), trd_kapton, kaptonVolMed);
-    //   TGeoVolume* trdmod1_kaptonvol = new TGeoVolume(Form("trd1mod%dkapton", moduleType), trd_kapton, kaptonVolMed);
-    trdmod1_kaptonvol->SetLineColor(kGreen);
-    TGeoTranslation* trd_kapton_trans = new TGeoTranslation("", 0., 0., kapton_position);
-    module->AddNode(trdmod1_kaptonvol, 1, trd_kapton_trans);
-  }
-
-  // start of Frame in z
-  // Gas
-  TGeoBBox* trd_gas          = new TGeoBBox("trd_gas", activeAreaX / 2., activeAreaY / 2., gas_thickness / 2.);
-  TGeoVolume* trdmod1_gasvol = new TGeoVolume("gas", trd_gas, gasVolMed);
-  //   TGeoVolume* trdmod1_gasvol = new TGeoVolume(Form("module%d_gas", moduleType), trd_gas, gasVolMed);
-  //   TGeoVolume* trdmod1_gasvol = new TGeoVolume(Form("trd1mod%dgas", moduleType), trd_gas, gasVolMed);
-  //   trdmod1_gasvol->SetLineColor(kBlue);
-  trdmod1_gasvol->SetLineColor(kGreen);  // to avoid blue overlaps in the screenshots
-  trdmod1_gasvol->SetTransparency(40);   // set transparency for the TRD gas
-  TGeoTranslation* trd_gas_trans = new TGeoTranslation("", 0., 0., gas_position);
-  module->AddNode(trdmod1_gasvol, 1, trd_gas_trans);
-  // end of Frame in z
-
-  if (IncludeGasFrame) {
-    // frame1
-    TGeoBBox* trd_frame1          = new TGeoBBox("trd_frame1", sizeX / 2., frameWidth / 2., frame_thickness / 2.);
-    TGeoVolume* trdmod1_frame1vol = new TGeoVolume("frame1", trd_frame1, frameVolMed);
-    trdmod1_frame1vol->SetLineColor(kRed);
-
-    // translations
-    TGeoTranslation* trd_frame1_trans = new TGeoTranslation("", 0., activeAreaY / 2. + frameWidth / 2., frame_position);
-    module->AddNode(trdmod1_frame1vol, 1, trd_frame1_trans);
-    trd_frame1_trans = new TGeoTranslation("", 0., -(activeAreaY / 2. + frameWidth / 2.), frame_position);
-    module->AddNode(trdmod1_frame1vol, 2, trd_frame1_trans);
-
-
-    // frame2
-    TGeoBBox* trd_frame2          = new TGeoBBox("trd_frame2", frameWidth / 2., activeAreaY / 2., frame_thickness / 2.);
-    TGeoVolume* trdmod1_frame2vol = new TGeoVolume("frame2", trd_frame2, frameVolMed);
-    trdmod1_frame2vol->SetLineColor(kRed);
-
-    // translations
-    TGeoTranslation* trd_frame2_trans = new TGeoTranslation("", activeAreaX / 2. + frameWidth / 2., 0., frame_position);
-    module->AddNode(trdmod1_frame2vol, 1, trd_frame2_trans);
-    trd_frame2_trans = new TGeoTranslation("", -(activeAreaX / 2. + frameWidth / 2.), 0., frame_position);
-    module->AddNode(trdmod1_frame2vol, 2, trd_frame2_trans);
-  }
-
-  if (IncludePadplane) {
-    // Pad Copper
-    TGeoBBox* trd_padcopper          = new TGeoBBox("trd_padcopper", sizeX / 2., sizeY / 2., padcopper_thickness / 2.);
-    TGeoVolume* trdmod1_padcoppervol = new TGeoVolume("padcopper", trd_padcopper, padcopperVolMed);
-    //   TGeoVolume* trdmod1_padcoppervol = new TGeoVolume(Form("module%d_padcopper", moduleType), trd_padcopper, padcopperVolMed);
-    //   TGeoVolume* trdmod1_padcoppervol = new TGeoVolume(Form("trd1mod%dpadcopper", moduleType), trd_padcopper, padcopperVolMed);
-    trdmod1_padcoppervol->SetLineColor(kOrange);
-    TGeoTranslation* trd_padcopper_trans = new TGeoTranslation("", 0., 0., padcopper_position);
-    module->AddNode(trdmod1_padcoppervol, 1, trd_padcopper_trans);
-
-    // Pad Plane
-    TGeoBBox* trd_padpcb          = new TGeoBBox("trd_padpcb", sizeX / 2., sizeY / 2., padplane_thickness / 2.);
-    TGeoVolume* trdmod1_padpcbvol = new TGeoVolume("padplane", trd_padpcb, padpcbVolMed);
-    //   TGeoVolume* trdmod1_padpcbvol = new TGeoVolume(Form("module%d_padplane", moduleType), trd_padpcb, padpcbVolMed);
-    //   TGeoVolume* trdmod1_padpcbvol = new TGeoVolume(Form("trd1mod%dpadplane", moduleType), trd_padpcb, padpcbVolMed);
-    trdmod1_padpcbvol->SetLineColor(kBlue);
-    TGeoTranslation* trd_padpcb_trans = new TGeoTranslation("", 0., 0., padplane_position);
-    module->AddNode(trdmod1_padpcbvol, 1, trd_padpcb_trans);
-  }
-
-  if (IncludeBackpanel) {
-    // Honeycomb
-    TGeoBBox* trd_honeycomb          = new TGeoBBox("trd_honeycomb", sizeX / 2., sizeY / 2., honeycomb_thickness / 2.);
-    TGeoVolume* trdmod1_honeycombvol = new TGeoVolume("honeycomb", trd_honeycomb, honeycombVolMed);
-    //   TGeoVolume* trdmod1_honeycombvol = new TGeoVolume(Form("module%d_honeycomb", moduleType), trd_honeycomb, honeycombVolMed);
-    //   TGeoVolume* trdmod1_honeycombvol = new TGeoVolume(Form("trd1mod%dhoneycomb", moduleType), trd_honeycomb, honeycombVolMed);
-    trdmod1_honeycombvol->SetLineColor(kOrange);
-    TGeoTranslation* trd_honeycomb_trans = new TGeoTranslation("", 0., 0., honeycomb_position);
-    module->AddNode(trdmod1_honeycombvol, 1, trd_honeycomb_trans);
-
-    // Carbon fiber layers
-    TGeoBBox* trd_carbon          = new TGeoBBox("trd_carbon", sizeX / 2., sizeY / 2., carbon_thickness / 2.);
-    TGeoVolume* trdmod1_carbonvol = new TGeoVolume("carbonsheet", trd_carbon, carbonVolMed);
-    //   TGeoVolume* trdmod1_carbonvol = new TGeoVolume(Form("module%d_carbonsheet", moduleType), trd_carbon, carbonVolMed);
-    //   TGeoVolume* trdmod1_carbonvol = new TGeoVolume(Form("trd1mod%dcarbon", moduleType), trd_carbon, carbonVolMed);
-    trdmod1_carbonvol->SetLineColor(kGreen);
-    TGeoTranslation* trd_carbon_trans = new TGeoTranslation("", 0., 0., carbon_position);
-    module->AddNode(trdmod1_carbonvol, 1, trd_carbon_trans);
-  }
-
-  if (IncludeAluLedge) {
-    // Al-ledge
-    TGeoBBox* trd_aluledge1 = new TGeoBBox("trd_aluledge1", sizeY / 2., aluminium_width / 2., aluminium_thickness / 2.);
-    TGeoVolume* trdmod1_aluledge1vol = new TGeoVolume("aluledge1", trd_aluledge1, aluledgeVolMed);
-    trdmod1_aluledge1vol->SetLineColor(kRed);
-
-    // translations
-    TGeoTranslation* trd_aluledge1_trans =
-      new TGeoTranslation("", 0., sizeY / 2. - aluminium_width / 2., aluminium_position);
-    module->AddNode(trdmod1_aluledge1vol, 1, trd_aluledge1_trans);
-    trd_aluledge1_trans = new TGeoTranslation("", 0., -(sizeY / 2. - aluminium_width / 2.), aluminium_position);
-    module->AddNode(trdmod1_aluledge1vol, 2, trd_aluledge1_trans);
-
-
-    // Al-ledge
-    TGeoBBox* trd_aluledge2 =
-      new TGeoBBox("trd_aluledge2", aluminium_width / 2., sizeY / 2. - aluminium_width, aluminium_thickness / 2.);
-    TGeoVolume* trdmod1_aluledge2vol = new TGeoVolume("aluledge2", trd_aluledge2, aluledgeVolMed);
-    trdmod1_aluledge2vol->SetLineColor(kRed);
-
-    // translations
-    TGeoTranslation* trd_aluledge2_trans =
-      new TGeoTranslation("", sizeX / 2. - aluminium_width / 2., 0., aluminium_position);
-    module->AddNode(trdmod1_aluledge2vol, 1, trd_aluledge2_trans);
-    trd_aluledge2_trans = new TGeoTranslation("", -(sizeX / 2. - aluminium_width / 2.), 0., aluminium_position);
-    module->AddNode(trdmod1_aluledge2vol, 2, trd_aluledge2_trans);
-  }
-
-  // FEBs
-  if (IncludeFebs) {
-    // assemblies
-    TGeoVolumeAssembly* trd_feb_vol = new TGeoVolumeAssembly("febvol");  // the mother volume of all FEBs
-    TGeoVolumeAssembly* trd_feb_box =
-      new TGeoVolumeAssembly("febbox");  // volume for inclined FEBs, then shifted along y
-    //TGeoVolumeAssembly* trd_feb_vol = new TGeoVolumeAssembly(Form("module%d_febvol", moduleType));  // the mother volume of all FEBs
-    //TGeoVolumeAssembly* trd_feb_box = new TGeoVolumeAssembly(Form("module%d_febbox", moduleType));  // volume for inclined FEBs, then shifted along y
-    //TGeoVolumeAssembly* trd_feb_vol = new TGeoVolumeAssembly(Form("trd1mod%dfebvol", moduleType));  // the mother volume of all FEBs
-    //TGeoVolumeAssembly* trd_feb_box = new TGeoVolumeAssembly(Form("trd1mod%dfebbox", moduleType));  // volume for inclined FEBs, then shifted along y
-
-    // translations + rotations
-    TGeoTranslation* trd_feb_trans1;      // center to corner
-    TGeoTranslation* trd_feb_trans2;      // corner back
-    TGeoRotation* trd_feb_rotation;       // rotation around x axis
-    TGeoTranslation* trd_feb_y_position;  // shift to y position on TRD
-    //      TGeoTranslation *trd_feb_null;       // no displacement
-
-    // replaced by matrix operation (see below)
-    //  //      Double_t yback, zback;
-    //  //      TGeoCombiTrans  *trd_feb_placement;
-    //  //      // fix Z back offset 0.3 at some point
-    //  //      yback = -    sin(feb_rotation_angle/180*3.141)  * feb_width /2.;
-    //  //      zback = - (1-cos(feb_rotation_angle/180*3.141)) * feb_width /2. + 0.3;
-    //  //      trd_feb_placement = new TGeoCombiTrans(0, feb_pos_y + yback, zback, trd_feb_rotation);
-    //  //      trd_feb_box->AddNode(trdmod1_feb, iFeb+1, trd_feb_placement);
-
-    //      trd_feb_null       = new TGeoTranslation("", 0., 0., 0.);  // empty operation
-    trd_feb_trans1   = new TGeoTranslation("", 0., -feb_thickness / 2.,
-                                         -feb_width / 2.);  // move bottom right corner to center
-    trd_feb_trans2   = new TGeoTranslation("", 0., feb_thickness / 2.,
-                                         feb_width / 2.);  // move bottom right corner back
-    trd_feb_rotation = new TGeoRotation();
-    trd_feb_rotation->RotateX(feb_rotation_angle[moduleType - 1]);
-
-    TGeoHMatrix* incline_feb = new TGeoHMatrix("");
-
-    //        (*incline_feb) = (*trd_feb_null);        // OK
-    //        (*incline_feb) = (*trd_feb_y_position);  // OK
-    //        (*incline_feb) = (*trd_feb_trans1);      // OK
-    //        (*incline_feb) = (*trd_feb_trans1) * (*trd_feb_y_position);  // OK
-    //        (*incline_feb) = (*trd_feb_trans1) * (*trd_feb_trans2);      // OK
-    //        (*incline_feb) = (*trd_feb_trans1) * (*trd_feb_rotation);    // OK
-    //        (*incline_feb) =  (*trd_feb_trans1) * (*trd_feb_rotation) * (*trd_feb_trans2) * (*trd_feb_y_position);  // not OK
-    // trd_feb_y_position is displaced in rotated coordinate system
-
-    // matrix operation to rotate FEB PCB around its corner on the backanel
-    (*incline_feb) = (*trd_feb_trans1) * (*trd_feb_rotation) * (*trd_feb_trans2);  // OK
-
-    // Create all FEBs and place them in an assembly which will be added to the TRD module
-    TGeoBBox* trd_feb       = new TGeoBBox("trd_feb", activeAreaX / 2., feb_thickness / 2.,
-                                     feb_width / 2.);               // the FEB itself - as a cuboid
-    TGeoVolume* trdmod1_feb = new TGeoVolume("feb", trd_feb, febVolMed);  // the FEB made of a certain medium
-    //      TGeoVolume* trdmod1_feb = new TGeoVolume(Form("module%d_feb", moduleType), trd_feb, febVolMed);  // the FEB made of a certain medium
-    //      TGeoVolume* trdmod1_feb = new TGeoVolume(Form("trd1mod%dfeb", moduleType), trd_feb, febVolMed);  // the FEB made of a certain medium
-    trdmod1_feb->SetLineColor(kYellow);  // set yellow color
-    trd_feb_box->AddNode(trdmod1_feb, 1, incline_feb);
-    // now we have an inclined FEB
-
-    // ASICs
-    if (IncludeAsics) {
-      Double_t asic_pos;
-      Double_t asic_pos_x;
-      TGeoTranslation* trd_asic_trans0;  // ASIC on FEB x position
-      TGeoTranslation* trd_asic_trans1;  // center to corner
-      TGeoTranslation* trd_asic_trans2;  // corner back
-      TGeoRotation* trd_asic_rotation;   // rotation around x axis
-
-      trd_asic_trans1   = new TGeoTranslation("", 0., -(feb_thickness + asic_offset + asic_thickness / 2.),
-                                            -feb_width / 2.);  // move ASIC center to FEB corner
-      trd_asic_trans2   = new TGeoTranslation("", 0., feb_thickness + asic_offset + asic_thickness / 2.,
-                                            feb_width / 2.);  // move FEB corner back to asic center
-      trd_asic_rotation = new TGeoRotation();
-      trd_asic_rotation->RotateX(feb_rotation_angle[moduleType - 1]);
-
-      TGeoHMatrix* incline_asic;
-
-      // put many ASICs on each inclined FEB
-      TGeoBBox* trd_asic = new TGeoBBox("trd_asic", asic_width / 2., asic_thickness / 2.,
-                                        asic_width / 2.);  // ASIC dimensions
-      // TODO: use Silicon as ASICs material
-      TGeoVolume* trdmod1_asic = new TGeoVolume("asic", trd_asic, asicVolMed);  // the ASIC made of a certain medium
-      //        TGeoVolume* trdmod1_asic = new TGeoVolume(Form("module%d_asic", moduleType), trd_asic, asicVolMed);   // the ASIC made of a certain medium
-      //        TGeoVolume* trdmod1_asic = new TGeoVolume(Form("trd1mod%dasic", moduleType), trd_asic, asicVolMed);   // the ASIC made of a certain medium
-      trdmod1_asic->SetLineColor(kBlue);  // set blue color for ASICs
-
-      Int_t nofAsics   = AsicsPerFeb[moduleType - 1] % 100;
-      Int_t groupAsics = AsicsPerFeb[moduleType - 1] / 100;  // either 1 or 2 or 3 (new ultimate)
-
-      if ((nofAsics == 16) && (activeAreaX < 60)) asic_distance = 0.0;  // for 57 cm  // 0.1;  // for 60 cm
-      else
-        asic_distance = 0.4;
-
-      for (Int_t iAsic = 0; iAsic < (nofAsics / groupAsics); iAsic++) {
-        if (groupAsics == 1)  // single ASICs
-        {
-          asic_pos =
-            (iAsic + 0.5) / nofAsics - 0.5;  // equal spacing of ASICs on the FEB, e.g. for no=3 : -1/3, 0, +1/3
-
-          // ASIC 1
-          asic_pos_x      = asic_pos * activeAreaX;
-          trd_asic_trans0 = new TGeoTranslation("", asic_pos_x, feb_thickness / 2. + asic_thickness / 2. + asic_offset,
-                                                0.);  // move asic on top of FEB
-          incline_asic    = new TGeoHMatrix("");
-          (*incline_asic) = (*trd_asic_trans0) * (*trd_asic_trans1) * (*trd_asic_rotation) * (*trd_asic_trans2);  // OK
-          trd_feb_box->AddNode(trdmod1_asic, iAsic + 1,
-                               incline_asic);  // now we have ASICs on the inclined FEB
-        }
-
-        if (groupAsics == 2)  // pairs of ASICs
-        {
-          asic_pos = (iAsic + 0.5) / (nofAsics / groupAsics)
-                     - 0.5;  // equal spacing of ASICs on the FEB, e.g. for no=3 : -1/3, 0, +1/3
-
-          // ASIC 1
-          asic_pos_x      = asic_pos * activeAreaX + (0.5 + asic_distance / 2.) * asic_width;
-          trd_asic_trans0 = new TGeoTranslation("", asic_pos_x, feb_thickness / 2. + asic_thickness / 2. + asic_offset,
-                                                0.);  // move asic on top of FEB);
-          incline_asic    = new TGeoHMatrix("");
-          (*incline_asic) = (*trd_asic_trans0) * (*trd_asic_trans1) * (*trd_asic_rotation) * (*trd_asic_trans2);  // OK
-          trd_feb_box->AddNode(trdmod1_asic, 2 * iAsic + 1,
-                               incline_asic);  // now we have ASICs on the inclined FEB
-
-          // ASIC 2
-          asic_pos_x      = asic_pos * activeAreaX - (0.5 + asic_distance / 2.) * asic_width;
-          trd_asic_trans0 = new TGeoTranslation("", asic_pos_x, feb_thickness / 2. + asic_thickness / 2. + asic_offset,
-                                                0.);  // move asic on top of FEB
-          incline_asic    = new TGeoHMatrix("");
-          (*incline_asic) = (*trd_asic_trans0) * (*trd_asic_trans1) * (*trd_asic_rotation) * (*trd_asic_trans2);  // OK
-          trd_feb_box->AddNode(trdmod1_asic, 2 * iAsic + 2,
-                               incline_asic);  // now we have ASICs on the inclined FEB
-        }
-
-        if (groupAsics == 3)  // triplets of ASICs
-        {
-          asic_pos = (iAsic + 0.5) / (nofAsics / groupAsics)
-                     - 0.5;  // equal spacing of ASICs on the FEB, e.g. for no=3 : -1/3, 0, +1/3
-
-          // ASIC 1
-          asic_pos_x      = asic_pos * activeAreaX + 1.1 * asic_width;  // (0.5 + asic_distance/2.) * asic_width;
-          trd_asic_trans0 = new TGeoTranslation("", asic_pos_x, feb_thickness / 2. + asic_thickness / 2. + asic_offset,
-                                                0.);  // move asic on top of FEB);
-          incline_asic    = new TGeoHMatrix("");
-          (*incline_asic) = (*trd_asic_trans0) * (*trd_asic_trans1) * (*trd_asic_rotation) * (*trd_asic_trans2);  // OK
-          trd_feb_box->AddNode(trdmod1_asic, 3 * iAsic + 1,
-                               incline_asic);  // now we have ASICs on the inclined FEB
-
-          // ASIC 2
-          asic_pos_x      = asic_pos * activeAreaX;
-          trd_asic_trans0 = new TGeoTranslation("", asic_pos_x, feb_thickness / 2. + asic_thickness / 2. + asic_offset,
-                                                0.);  // move asic on top of FEB
-          incline_asic    = new TGeoHMatrix("");
-          (*incline_asic) = (*trd_asic_trans0) * (*trd_asic_trans1) * (*trd_asic_rotation) * (*trd_asic_trans2);  // OK
-          trd_feb_box->AddNode(trdmod1_asic, 3 * iAsic + 2,
-                               incline_asic);  // now we have ASICs on the inclined FEB
-
-          // ASIC 3
-          asic_pos_x      = asic_pos * activeAreaX - 1.1 * asic_width;  // (0.5 + asic_distance/2.) * asic_width;
-          trd_asic_trans0 = new TGeoTranslation("", asic_pos_x, feb_thickness / 2. + asic_thickness / 2. + asic_offset,
-                                                0.);  // move asic on top of FEB
-          incline_asic    = new TGeoHMatrix("");
-          (*incline_asic) = (*trd_asic_trans0) * (*trd_asic_trans1) * (*trd_asic_rotation) * (*trd_asic_trans2);  // OK
-          trd_feb_box->AddNode(trdmod1_asic, 3 * iAsic + 3,
-                               incline_asic);  // now we have ASICs on the inclined FEB
-        }
-      }
-      // now we have an inclined FEB with ASICs
-    }
-
-
-    // now go on with FEB placement
-    Double_t feb_pos;
-    Double_t feb_pos_y;
-
-    Int_t nofFebs = FebsPerModule[moduleType - 1];
-    for (Int_t iFeb = 0; iFeb < nofFebs; iFeb++) {
-      feb_pos = (iFeb + 0.5) / nofFebs - 0.5;  // equal spacing of FEBs on the backpanel
-      // cout << "feb_pos " << iFeb << ": " << feb_pos << endl;
-      feb_pos_y = feb_pos * activeAreaY;
-      feb_pos_y += feb_width / 2. * sin(feb_rotation_angle[moduleType - 1] * acos(-1.) / 180.);
-
-      // shift inclined FEB in y to its final position
-      trd_feb_y_position = new TGeoTranslation("", 0., feb_pos_y,
-                                               feb_z_offset);  // with additional fixed offset in z direction
-      //        trd_feb_y_position = new TGeoTranslation("", 0., feb_pos_y, 0.0);  // touching the backpanel with the corner
-      trd_feb_vol->AddNode(trd_feb_box, iFeb + 1, trd_feb_y_position);  // position FEB in y
-    }
-
-    if (IncludeRobs) {
-      // GBTx ROBs
-      Double_t rob_size_x    = 20.0;  // 13.0; // 130 mm
-      Double_t rob_size_y    = 9.0;   //  4.5; //  45 mm
-      Double_t rob_offset    = 1.2;
-      Double_t rob_thickness = feb_thickness;
-
-      TGeoVolumeAssembly* trd_rob_box =
-        new TGeoVolumeAssembly("robbox");  // volume for inclined FEBs, then shifted along y
-      TGeoBBox* trd_rob       = new TGeoBBox("trd_rob", rob_size_x / 2., rob_size_y / 2.,
-                                       rob_thickness / 2.);           // the ROB itself
-      TGeoVolume* trdmod1_rob = new TGeoVolume("rob", trd_rob, febVolMed);  // the ROB made of a certain medium
-      trdmod1_rob->SetLineColor(kRed);                                      // set color
-
-      //      TGeoHMatrix *incline_rob = new TGeoHMatrix("");
-      trd_rob_box->AddNode(trdmod1_rob, 1);
-
-      // GBTXs
-      Double_t gbtx_pos;
-      Double_t gbtx_pos_x;
-      Double_t gbtx_pos_y;
-      TGeoTranslation* trd_gbtx_trans1;  // center to corner
-
-      // GBTX parameters
-      const Double_t gbtx_thickness = 0.25;  // 2.5 mm
-      const Double_t gbtx_width     = 3.0;   // 2.0;  1.0;   // 1 cm
-
-      // put many GBTXs on each inclined FEB
-      TGeoBBox* trd_gbtx       = new TGeoBBox("trd_gbtx", gbtx_width / 2., gbtx_width / 2.,
-                                        gbtx_thickness / 2.);             // GBTX dimensions
-      TGeoVolume* trdmod1_gbtx = new TGeoVolume("gbtx", trd_gbtx, asicVolMed);  // the GBTX made of a certain medium
-      trdmod1_gbtx->SetLineColor(kGreen);                                       // set color for GBTXs
-
-      Int_t nofGbtxs   = GbtxPerRob[moduleType - 1] % 100;
-      Int_t groupGbtxs = GbtxPerRob[moduleType - 1] / 100;  // usually 1
-
-      //      nofGbtxs   = 7;
-      //      groupGbtxs = 1;
-
-      Int_t nofGbtxX = (nofGbtxs - 1) / 2. + 1;  // +1 is for GBTx master
-      Int_t nofGbtxY = 2;
-
-      Double_t gbtx_distance = 0.4;
-      Int_t iGbtx            = 1;
-
-      for (Int_t iGbtxX = 0; iGbtxX < nofGbtxX; iGbtxX++) {
-        gbtx_pos = (iGbtxX + 0.5) / nofGbtxX - 0.5;  // equal spacing of GBTXs on the FEB, e.g. for no=3 : -1/3, 0, +1/3
-        gbtx_pos_x = -gbtx_pos * rob_size_x;
-
-        if (iGbtxX > 0)
-          for (Int_t iGbtxY = 0; iGbtxY < nofGbtxY; iGbtxY++) {
-            gbtx_pos =
-              (iGbtxY + 0.5) / nofGbtxY - 0.5;  // equal spacing of GBTXs on the FEB, e.g. for no=3 : -1/3, 0, +1/3
-            gbtx_pos_y = gbtx_pos * rob_size_y;
-
-            trd_gbtx_trans1 = new TGeoTranslation("", gbtx_pos_x, gbtx_pos_y,
-                                                  rob_thickness / 2. + gbtx_thickness / 2.);  // move gbtx on top of ROB
-            trd_rob_box->AddNode(trdmod1_gbtx, iGbtx++,
-                                 trd_gbtx_trans1);  // now we have GBTXs on the ROB
-          }
-        else {
-          gbtx_pos_y = 0;
-
-          trd_gbtx_trans1 = new TGeoTranslation("", gbtx_pos_x, gbtx_pos_y,
-                                                rob_thickness / 2. + gbtx_thickness / 2.);  // move gbtx on top of ROB
-          trd_rob_box->AddNode(trdmod1_gbtx, iGbtx++,
-                               trd_gbtx_trans1);  // now we have GBTXs on the ROB
-        }
-      }
-
-      // now go on with ROB placement
-      Double_t rob_pos;
-      Double_t rob_pos_y;
-      TGeoTranslation* trd_rob_y_position;  // shift to y position on TRD
-
-      Int_t nofRobs = RobsPerModule[moduleType - 1];
-      for (Int_t iRob = 0; iRob < nofRobs; iRob++) {
-        rob_pos   = (iRob + 0.5) / nofRobs - 0.5;  // equal spacing of ROBs on the backpanel
-        rob_pos_y = rob_pos * activeAreaY;
-
-        // shift inclined ROB in y to its final position
-        if (feb_rotation_angle[moduleType - 1] == 90)  // if FEB parallel to backpanel
-          trd_rob_y_position = new TGeoTranslation("", 0., rob_pos_y,
-                                                   -feb_width / 2. + rob_offset);  // place ROBs close to FEBs
-        else {
-          //	    Int_t rob_z_pos = 0.;  // test where ROB is placed by default
-          Int_t rob_z_pos =
-            -feb_width / 2. + feb_width * cos(feb_rotation_angle[moduleType - 1] * acos(-1.) / 180.) + rob_offset;
-          if (rob_z_pos > feb_width / 2.)  // if the rob is too far out
-          {
-            rob_z_pos = feb_width / 2. - rob_thickness;  // place ROBs at end of feb volume
-            std::cout << "GBTx ROB was outside of the FEB volume, check "
-                         "overlap with FEB"
-                      << std::endl;
-          }
-          trd_rob_y_position = new TGeoTranslation("", 0., rob_pos_y, rob_z_pos);
-        }
-        trd_feb_vol->AddNode(trd_rob_box, iRob + 1, trd_rob_y_position);  // position FEB in y
-      }
-
-    }  // IncludeGbtx
-
-    // put FEB box on module
-    TGeoTranslation* trd_febvolume_trans = new TGeoTranslation("", 0., 0., febvolume_position);
-    gGeoMan->GetVolume(name)->AddNode(trd_feb_vol, 1,
-                                      trd_febvolume_trans);  // put febvolume at correct z position wrt to the module
-  }
-
-  // DE123
-
-  return module;
-}
-
-//________________________________________________________________________________________________
-//  TRD Bucharest module definition
-TGeoTranslation* tr(NULL);
-TString sexpr;
-void addFlatCableHoles(const Char_t* name)
-{
-  printf("addFlatCableHoles(%s)\n", name);
-  sexpr = name;
-  sexpr += "_bd";
-  for (Int_t c(0); c < 9; c++) {
-    printf("c[%d]\n", c);
-    for (Int_t r(0); r < 10; r++) {
-      printf("r[%d]\n", r);
-      tr = new TGeoTranslation(Form("t%s%d%02d", name, c, r), (c - 4) * 6, 1.35 + 2.7 * r, 0.);
-      tr->RegisterYourself();
-      sexpr += Form("-%s_fc:t%s%d%02d", name, name, c, r);
-    }
-    for (Int_t r(10); r < 20; r++) {
-      printf("r[%d]\n", r);
-      tr = new TGeoTranslation(Form("t%s%d%02d", name, c, r), (c - 4) * 6, -1.35 - 2.7 * (r - 10), 0.);
-      tr->RegisterYourself();
-      sexpr += Form("-%s_fc:t%s%d%02d", name, name, c, r);
-    }
-  }
-}
-TGeoVolume* create_trd2d_module_type(Int_t moduleType)
-{
-  Info("create_trd2d_module_type", "Bulding Bucharest Module [%s].", moduleType == 9 ? "TRD2D" : "TRD-2DH");
-  Int_t detTypeIdx     = moduleType == 9 ? 2 : 3;
-  Double_t sizeX       = DetectorSizeX[detTypeIdx];
-  Double_t sizeY       = DetectorSizeY[detTypeIdx];
-  Double_t frameWidth  = FrameWidth[detTypeIdx];
-  Double_t activeAreaX = sizeX - 2 * frameWidth;
-  Double_t activeAreaY = sizeY - 2 * frameWidth;
-
-  TGeoMedium* keepVolMed      = gGeoMan->GetMedium(KeepingVolumeMedium);
-  TGeoMedium* radVolMed       = gGeoMan->GetMedium(RadiatorVolumeMedium);
-  TGeoMedium* latticeVolMed   = gGeoMan->GetMedium(LatticeVolumeMedium);
-  TGeoMedium* kaptonVolMed    = gGeoMan->GetMedium(KaptonVolumeMedium);
-  TGeoMedium* gasVolMed       = gGeoMan->GetMedium(GasVolumeMedium);
-  TGeoMedium* padcopperVolMed = gGeoMan->GetMedium(PadCopperVolumeMedium);
-  TGeoMedium* padpcbVolMed    = gGeoMan->GetMedium(PadPcbVolumeMedium);
-  TGeoMedium* honeycombVolMed = gGeoMan->GetMedium(HoneycombVolumeMedium);
-  TGeoMedium* carbonVolMed    = gGeoMan->GetMedium(CarbonVolumeMedium);
-  //  TGeoMedium* mylarVolMed       = gGeoMan->GetMedium(MylarVolumeMedium);
-  //  TGeoMedium* electronicsVolMed = gGeoMan->GetMedium(ElectronicsVolumeMedium);
-  TGeoMedium* frameVolMed     = gGeoMan->GetMedium(FrameVolumeMedium);
-  TGeoMedium* febVolMed       = gGeoMan->GetMedium(FebVolumeMedium);
-  TGeoMedium* asicVolMed      = gGeoMan->GetMedium(AsicVolumeMedium);
-  TGeoMedium* aluminiumVolMed = gGeoMan->GetMedium(AluminiumVolumeMedium);
-
-  TString name       = Form("module%d", moduleType);
-  TGeoVolume* module = new TGeoVolumeAssembly(name);
-
-
-  if (IncludeRadiator) {  // Radiator
-    TGeoBBox* trd_radiator     = new TGeoBBox("trd_radiator", sizeX / 2., sizeY / 2., radiator_thickness / 2.);
-    TGeoVolume* trdmod1_radvol = new TGeoVolume("Radiator", trd_radiator, radVolMed);
-    trdmod1_radvol->SetLineColor(kRed);
-    trdmod1_radvol->SetTransparency(50);  // (60);  // (70);  // set transparency for the TRD radiator
-    TGeoTranslation* trd_radiator_trans = new TGeoTranslation("", 0., 0., radiator_position);
-    module->AddNode(trdmod1_radvol, 1, trd_radiator_trans);
-  }
-
-  Double_t winIn_C_thickness  = 0.02;
-  Double_t winIn_HC_thickness = 1.;
-  Double_t winIn_thickness    = winIn_HC_thickness + /*2**/ winIn_C_thickness;
-  if (IncludeLattice) {  // Entrance window in the case of the Bucharest prototype
-    Info("create_trd2d_module_type", "make entrance widow ...");
-    // Carbon fiber layers
-    TGeoBBox* winIn_C = new TGeoBBox("winIn_C", 0.3 + activeAreaX / 2., 0.9 + activeAreaY / 2., winIn_C_thickness / 2.);
-    TGeoVolume* vol_winIn_C = new TGeoVolume("vol_winIn_C", winIn_C, carbonVolMed);
-    vol_winIn_C->SetLineColor(kGray);
-    // Honeycomb layer
-    TGeoBBox* winIn_HC =
-      new TGeoBBox("winIn_HC", -0.3 + activeAreaX / 2., 0.3 + activeAreaY / 2., winIn_HC_thickness / 2.);
-    TGeoVolume* vol_winIn_HC = new TGeoVolume("vol_winIn_HC", winIn_HC, honeycombVolMed);
-    vol_winIn_HC->SetLineColor(kOrange);
-    // framex
-    TGeoBBox* winIn_fx =
-      new TGeoBBox("winIn_fx", -0.3 + activeAreaX / 2, WIN_Frame_thickness / 2, winIn_HC_thickness / 2.);
-    TGeoVolume* vol_winIn_fx = new TGeoVolume("vol_winIn_fx", winIn_fx, frameVolMed);
-    vol_winIn_fx->SetLineColor(kBlue);
-    // framey
-    TGeoBBox* winIn_fy =
-      new TGeoBBox("winIn_fy", WIN_Frame_thickness / 2, (1.8 + activeAreaY) / 2, winIn_HC_thickness / 2.);
-    TGeoVolume* vol_winIn_fy = new TGeoVolume("vol_winIn_fy", winIn_fy, frameVolMed);
-    vol_winIn_fy->SetLineColor(kCyan);
-    // Add up all components
-    TGeoVolumeAssembly* trd_win_in = new TGeoVolumeAssembly("EntranceWin");
-    trd_win_in->AddNode(vol_winIn_fx, 1, new TGeoTranslation("", 0., 0.6 + activeAreaY / 2., 0));
-    trd_win_in->AddNode(vol_winIn_fx, 2, new TGeoTranslation("", 0., -(activeAreaY / 2. + 0.6), 0));
-    trd_win_in->AddNode(vol_winIn_fy, 1, new TGeoTranslation("", activeAreaX / 2., 0., 0));
-    trd_win_in->AddNode(vol_winIn_fy, 2, new TGeoTranslation("", -activeAreaX / 2., 0., 0));
-
-    trd_win_in->AddNode(vol_winIn_HC, 1);
-    trd_win_in->AddNode(vol_winIn_C, 1,
-                        new TGeoTranslation("", 0., 0., 0.5 * (winIn_HC_thickness + winIn_C_thickness)));
-    //     trd_win_in->AddNode(vol_winIn_C, 2,
-    //                     new TGeoTranslation("", 0., 0., -(winIn_thickness-winIn_C_thickness)/2.));
-    module->AddNode(trd_win_in, 1,
-                    new TGeoTranslation(
-                      "", 0., 0., gasBu_position - gas_thickness / 2. - winIn_C_thickness - winIn_HC_thickness / 2.));
-  }
-
-  // Gas. The volume has to be defined only for pads (read-out) area. Take care in the DigiPara definition
-  TGeoBBox* trd_gas   = new TGeoBBox("trd_gas", 0.5 * activeAreaX, 0.5 * activeAreaY, 0.5 * gas_thickness);
-  TGeoVolume* vol_gas = new TGeoVolume("gas", trd_gas, gasVolMed);
-  vol_gas->SetLineColor(kRed + 3);  //trdmod1_gasvol->SetTransparency(40);
-  TGeoBBox* trd_gas_dstr   = new TGeoBBox("trd_gas_dstr", 0.5 * activeAreaX, 0.2, 0.5 * gas_thickness);
-  TGeoVolume* vol_gas_dstr = new TGeoVolume("inlet", trd_gas_dstr, gasVolMed);
-  vol_gas_dstr->SetLineColor(kRed);
-  module->AddNode(vol_gas, 0, new TGeoTranslation("", 0., 0., gasBu_position));
-  module->AddNode(vol_gas_dstr, 0, new TGeoTranslation("", 0., 0.5 * activeAreaY + 0.2, gasBu_position));
-  module->AddNode(vol_gas_dstr, 1, new TGeoTranslation("", 0., -0.5 * activeAreaY - 0.2, gasBu_position));
-
-  const Double_t pp_pads_thickness = 0.0025;
-  const Double_t pp_pcb_thickness  = 0.0360;
-  const Double_t pp_hc_thickness   = 0.2;
-  const Double_t pp_c_thickness    = 0.05;
-  const Double_t pp_thickness      = /*pp_pads_thickness + */ pp_pcb_thickness + pp_hc_thickness + pp_c_thickness;
-  if (IncludePadplane) {
-    const Char_t* ppn = (detTypeIdx == 2 ? "pp" : "pph");
-    Info("create_trd2d_module_type", "make pad-plane ...");
-    // Pad Copper
-    TGeoBBox* trd_pp = new TGeoBBox(Form("%s_cu", ppn), activeAreaX / 2., activeAreaY / 2., pp_pads_thickness / 2.);
-    TGeoVolume* vol_trd_pp = new TGeoVolume(Form("vol_%s_cu", ppn), trd_pp, padcopperVolMed);
-    vol_trd_pp->SetLineColor(kRed);
-    // Pad Plane
-    TGeoBBox* trd_ppPCB =
-      new TGeoBBox(Form("%s_pcb", ppn), 1.0 + activeAreaX / 2., 0.9 + activeAreaY / 2., pp_pcb_thickness / 2.);
-    TGeoVolume* vol_trd_ppPCB = new TGeoVolume(Form("vol_%s_pcb", ppn), trd_ppPCB, padpcbVolMed);
-    vol_trd_ppPCB->SetLineColor(kGreen);
-    // Pad Plane HC
-    TGeoBBox* trd_ppHC_bd =
-      new TGeoBBox(Form("%s_hc_bd", ppn), 1.0 + activeAreaX / 2., 0.9 + activeAreaY / 2., pp_hc_thickness / 2.);
-    TGeoBBox* trd_ppHC_fc = new TGeoBBox(Form("%s_hc_fc", ppn), 2.4 / 2., 0.8 / 2., (1.e-4 + pp_hc_thickness) / 2.);
-    //if(detTypeIdx==2) addFlatCableHoles(Form("%s_hc", ppn));
-    //TGeoCompositeShape* trd_ppHC = new TGeoCompositeShape(Form("%s_hc", ppn), sexpr.Data());
-    TGeoVolume* vol_trd_ppHC = new TGeoVolume(Form("vol_%s_hc", ppn), trd_ppHC_bd, honeycombVolMed);
-    vol_trd_ppHC->SetLineColor(kOrange);
-    // Pad Plane C fiber
-    TGeoBBox* trd_ppC_bd =
-      new TGeoBBox(Form("%s_c_bd", ppn), 1.0 + activeAreaX / 2., 0.9 + activeAreaY / 2., pp_c_thickness / 2.);
-    TGeoBBox* trd_ppC_fc = new TGeoBBox(Form("%s_c_fc", ppn), 2.4 / 2., 0.8 / 2., (1.e-4 + pp_c_thickness) / 2.);
-    //if(detTypeIdx==2) addFlatCableHoles(Form("%s_c", ppn));
-    //TGeoCompositeShape* trd_ppC = new TGeoCompositeShape(Form("%s_c", ppn), sexpr.Data());
-    TGeoVolume* vol_trd_ppC = new TGeoVolume(Form("vol_%s_c", ppn), trd_ppC_bd, carbonVolMed);
-    vol_trd_ppC->SetLineColor(kGray);
-
-    // Add up all components
-    TGeoVolumeAssembly* vol_pp = new TGeoVolumeAssembly("PadPlane");
-    vol_pp->AddNode(vol_trd_pp, 1, new TGeoTranslation("", 0., 0., -pp_thickness / 2 - pp_pads_thickness / 2));
-    vol_pp->AddNode(vol_trd_ppPCB, 1, new TGeoTranslation("", 0., 0., -pp_thickness / 2 + pp_pcb_thickness / 2));
-    vol_pp->AddNode(vol_trd_ppHC, 1,
-                    new TGeoTranslation("", 0., 0., -pp_thickness / 2 + pp_pcb_thickness + pp_hc_thickness / 2));
-    vol_pp->AddNode(vol_trd_ppC, 1, new TGeoTranslation("", 0., 0., pp_thickness / 2 - pp_c_thickness / 2));
-    module->AddNode(vol_pp, 1,
-                    new TGeoTranslation("", 0., 0., gasBu_position + gas_thickness / 2. + pp_thickness / 2.));
-  }
-
-
-  if (IncludeGasFrame) {
-    Info("create_trd2d_module_type", "make gas frame ...");
-    // framex
-    TGeoBBox* frame_fx0       = new TGeoBBox("frame_fx0", activeAreaX / 2., 0.5 / 2., gas_thickness / 2.);
-    TGeoVolume* vol_frame_fx0 = new TGeoVolume("vol_frame_fx0", frame_fx0, frameVolMed);
-    vol_frame_fx0->SetLineColor(kYellow - 2);
-    Double_t frame_fx1_thickness = winIn_thickness + gas_thickness + pp_thickness;
-    TGeoBBox* frame_fx1          = new TGeoBBox("frame_fx1", 1. + activeAreaX / 2., 0.3 / 2., frame_fx1_thickness / 2.);
-    TGeoVolume* vol_frame_fx1    = new TGeoVolume("vol_frame_fx1", frame_fx1, frameVolMed);
-    vol_frame_fx1->SetLineColor(kViolet);  //vol_frame_fx1->SetTransparency(50);
-
-    // framey
-    TGeoBBox* frame_fy_0       = new TGeoBBox("frame_fy_0", 0.7 / 2., (1.8 + activeAreaY) / 2., winIn_thickness / 2.);
-    TGeoVolume* vol_frame_fy_0 = new TGeoVolume("vol_frame_fy_0", frame_fy_0, frameVolMed);
-    vol_frame_fy_0->SetLineColor(kBlue);
-    TGeoBBox* frame_fy_1 =
-      new TGeoBBox("frame_fy_1", 1.0 / 2., (1.8 + activeAreaY) / 2., 0.4 / 2.);  // catode wire support
-    TGeoVolume* vol_frame_fy_1 = new TGeoVolume("vol_frame_fy_1", frame_fy_1, frameVolMed);
-    vol_frame_fy_1->SetLineColor(kBlue - 3);
-    TGeoBBox* frame_fy_2 =
-      new TGeoBBox("frame_fy_2", 0.7 / 2., (1.8 + activeAreaY) / 2., 0.4 / 2.);  // anode wire support
-    TGeoVolume* vol_frame_fy_2 = new TGeoVolume("vol_frame_fy_2", frame_fy_2, frameVolMed);
-    vol_frame_fy_2->SetLineColor(kOrange + 4);
-    TGeoBBox* frame_fy_3 =
-      new TGeoBBox("frame_fy_3", 0.4 / 2., (1.8 + activeAreaY) / 2., 0.4 / 2.);  // pad-plane support
-    TGeoVolume* vol_frame_fy_3 = new TGeoVolume("vol_frame_fy_3", frame_fy_3, frameVolMed);
-    vol_frame_fy_3->SetLineColor(kYellow + 3);
-    // add up framey components
-    TGeoVolumeAssembly* vol_frame_fy0 =
-      new TGeoVolumeAssembly("vol_frame_fy0");  // the mother volume of wire support ledge
-    vol_frame_fy0->AddNode(vol_frame_fy_0, 1,
-                           new TGeoTranslation("", -0.3 - 0.7 / 2., 0., -(0.4 * 1.5 + winIn_thickness / 2.)));
-    vol_frame_fy0->AddNode(vol_frame_fy_1, 1, new TGeoTranslation("", -1.0 / 2., 0., -0.4));
-    vol_frame_fy0->AddNode(vol_frame_fy_2, 1, new TGeoTranslation("", -0.7 / 2., 0., 0.));
-    vol_frame_fy0->AddNode(vol_frame_fy_3, 1, new TGeoTranslation("", -0.4 / 2., 0., 0.4));
-    TGeoBBox* frame_fy1       = new TGeoBBox("frame_fy1", 0.3 / 2., 1.2 + activeAreaY / 2., frame_fx1_thickness / 2.);
-    TGeoVolume* vol_frame_fy1 = new TGeoVolume("vol_frame_fy1", frame_fy1, frameVolMed);
-    vol_frame_fy1->SetLineColor(kViolet + 2);  //vol_frame_fy1->SetTransparency(50);
-
-    // Add up all frames
-    Double_t frame_fx1_position       = -winIn_thickness - gas_thickness / 2. + frame_fx1_thickness / 2.;
-    TGeoVolumeAssembly* trd_gas_frame = new TGeoVolumeAssembly("Frame");  // the mother volume of gas frame
-    trd_gas_frame->AddNode(vol_frame_fx0, 1, new TGeoTranslation("", 0., activeAreaY / 2. + 0.4 + 0.5 / 2, 0));
-    trd_gas_frame->AddNode(vol_frame_fx0, 2, new TGeoTranslation("", 0., -(activeAreaY / 2. + 0.4 + 0.5 / 2), 0));
-    trd_gas_frame->AddNode(vol_frame_fx1, 1,
-                           new TGeoTranslation("", 0., activeAreaY / 2. + 0.4 + 0.5 + 0.3 / 2, frame_fx1_position));
-    trd_gas_frame->AddNode(vol_frame_fx1, 2,
-                           new TGeoTranslation("", 0., -(activeAreaY / 2. + 0.4 + 0.5 + 0.3 / 2), frame_fx1_position));
-
-    trd_gas_frame->AddNode(vol_frame_fy0, 1, new TGeoTranslation("", -activeAreaX / 2., 0., 0));
-    TGeoRotation* fy_rot = new TGeoRotation();
-    fy_rot->RotateZ(180.);
-    TGeoTranslation* fy_tra   = new TGeoTranslation("", -activeAreaX / 2., 0., 0);
-    TGeoHMatrix* fy_transform = new TGeoHMatrix("");
-    (*fy_transform)           = (*fy_rot) * (*fy_tra);
-    trd_gas_frame->AddNode(vol_frame_fy0, 2, fy_transform);
-    trd_gas_frame->AddNode(vol_frame_fy1, 1,
-                           new TGeoTranslation("", activeAreaX / 2. + 1.0 + 0.3 / 2, 0, frame_fx1_position));
-    trd_gas_frame->AddNode(vol_frame_fy1, 2,
-                           new TGeoTranslation("", -(activeAreaX / 2. + 1.0 + 0.3 / 2), 0, frame_fx1_position));
-
-    // add Al reinforcements on the edges of the gas frame
-    if (moduleType == 9) {
-      // y direction
-      TGeoBBox* frame_al_y0       = new TGeoBBox("frame_al_y0", 0.4 / 2., (sizeY - 1.4) / 2., 1.8 / 2.);
-      TGeoVolume* vol_frame_al_y0 = new TGeoVolume("vol_frame_al_y0", frame_al_y0, aluminiumVolMed);
-      trd_gas_frame->AddNode(vol_frame_al_y0, 1, new TGeoTranslation("", -0.5 * (sizeX + 0.2) + 1.1, 0, -1));
-      trd_gas_frame->AddNode(vol_frame_al_y0, 2, new TGeoTranslation("", +0.5 * (sizeX + 0.2) - 1.1, 0, -1));
-      //
-      TGeoBBox* frame_al_y1       = new TGeoBBox("frame_al_y1", 2.5 / 2., (sizeY - 1.4) / 2., 0.4 / 2.);
-      TGeoVolume* vol_frame_al_y1 = new TGeoVolume("vol_frame_al_y1", frame_al_y1, aluminiumVolMed);
-      trd_gas_frame->AddNode(vol_frame_al_y1, 1, new TGeoTranslation("", -0.5 * sizeX - 0.4, 0, -0.3));
-      trd_gas_frame->AddNode(vol_frame_al_y1, 2, new TGeoTranslation("", +0.5 * sizeX + 0.4, 0, -0.3));
-      // connector to frame
-      TGeoBBox* frame_al_y2       = new TGeoBBox("frame_al_y2", 2.5 / 2., (sizeY + 5) / 2., 0.8 / 2.);
-      TGeoVolume* vol_frame_al_y2 = new TGeoVolume("vol_frame_al_y2", frame_al_y2, aluminiumVolMed);
-      trd_gas_frame->AddNode(vol_frame_al_y2, 1, new TGeoTranslation("", -0.5 * sizeX - 0.4, 0, -0.9));
-      trd_gas_frame->AddNode(vol_frame_al_y2, 2, new TGeoTranslation("", +0.5 * sizeX + 0.4, 0, -0.9));
-      // x direction
-      TGeoBBox* frame_al_x0       = new TGeoBBox("frame_al_x0", (sizeX - 2.4) / 2., 0.3 / 2, 2.5 / 2.);
-      TGeoVolume* vol_frame_al_x0 = new TGeoVolume("vol_frame_al_x0", frame_al_x0, aluminiumVolMed);
-      trd_gas_frame->AddNode(vol_frame_al_x0, 1, new TGeoTranslation("", 0, -0.5 * (sizeY + 0.15) + 1.2, 0));
-      trd_gas_frame->AddNode(vol_frame_al_x0, 2, new TGeoTranslation("", 0, +0.5 * (sizeY + 0.15) - 1.2, 0));
-      // ====
-      TGeoBBox* frame_al_x1       = new TGeoBBox("frame_al_x1", (sizeX - 2.4) / 2., 0.3 / 2, 2.5 / 2.);
-      TGeoVolume* vol_frame_al_x1 = new TGeoVolume("vol_frame_al_x1", frame_al_x1, aluminiumVolMed);
-      trd_gas_frame->AddNode(vol_frame_al_x1, 1, new TGeoTranslation("", 0, -0.5 * (sizeY + 0.15) + 1.2, -0.5));
-      trd_gas_frame->AddNode(vol_frame_al_x1, 2, new TGeoTranslation("", 0, +0.5 * (sizeY + 0.15) - 1.2, -0.5));
-    }
-
-    module->AddNode(trd_gas_frame, 1, new TGeoTranslation("", 0., 0., gasBu_position));
-  }
-
-
-  const Double_t bp_hc_thickness  = 2.;
-  const Double_t bp_pcb_thickness = 0.05;
-  const Double_t bp_cu_thickness  = 0.003;
-  const Double_t bp_thickness     = bp_cu_thickness + bp_hc_thickness + bp_pcb_thickness;
-  const Double_t bp_position      = gasBu_position + 0.5 * gas_thickness + pp_thickness;
-  if (IncludeBackpanel) {
-    Info("create_trd2d_module_type", "make backpanel ...");
-    // Honeycomb board and flat-cable hole
-    TGeoBBox* bp_hc_bd = new TGeoBBox("bp_hc_bd", activeAreaX / 2., activeAreaY / 2., bp_hc_thickness / 2.);
-    TGeoBBox* bp_hc_fc = new TGeoBBox("bp_hc_fc", 2.4 / 2., 0.8 / 2., (1.e-4 + bp_hc_thickness) / 2.);
-    //if(detTypeIdx==2) addFlatCableHoles("bp_hc");
-    //TGeoCompositeShape* bp_hc = new TGeoCompositeShape("bp_hc", sexpr.Data());
-    TGeoVolume* vol_bp_hc = new TGeoVolume(".vol_bp_hc", bp_hc_bd, honeycombVolMed);
-    vol_bp_hc->SetLineColor(kOrange);
-    // Screen fibre-glass support (PCB)
-    TGeoBBox* bp_pcb_bd =
-      new TGeoBBox("bp_pcb_bd", 0.5 + activeAreaX / 2., 0.5 + activeAreaY / 2., bp_pcb_thickness / 2.);
-    TGeoBBox* bp_pcb_fc = new TGeoBBox("bp_pcb_fc", 2.4 / 2., 0.8 / 2., (1.e-3 + bp_pcb_thickness) / 2.);
-    //if(detTypeIdx==2) addFlatCableHoles("bp_pcb");
-    //TGeoCompositeShape* bp_pcb = new TGeoCompositeShape("bp_pcb", sexpr.Data());
-    TGeoVolume* vol_bp_pcb = new TGeoVolume("vol_bp_pcb", bp_pcb_bd, padpcbVolMed);
-    vol_bp_pcb->SetLineColor(kGreen);
-    // Pad Copper
-    TGeoBBox* bp_cu_bd = new TGeoBBox("bp_cu_bd", 0.5 + activeAreaX / 2., 0.5 + activeAreaY / 2., bp_cu_thickness / 2.);
-    TGeoBBox* bp_cu_fc = new TGeoBBox("bp_cu_fc", 2.4 / 2., 0.8 / 2., (1.e-3 + bp_cu_thickness) / 2.);
-    //if(detTypeIdx==2) addFlatCableHoles("bp_cu");
-    //TGeoCompositeShape* bp_cu = new TGeoCompositeShape("bp_cu", sexpr.Data());
-    TGeoVolume* vol_bp_cu = new TGeoVolume("vol_bp_cu", bp_cu_bd, padcopperVolMed);
-    vol_bp_cu->SetLineColor(kRed);
-
-    TGeoBBox* bp_fx       = new TGeoBBox("bp_fx", activeAreaX / 2., 0.5 / 2., bp_hc_thickness / 2.);
-    TGeoVolume* vol_bp_fx = new TGeoVolume("vol_bp_fx", bp_fx, frameVolMed);
-    vol_bp_fx->SetLineColor(kViolet);  //vol_gas_fx1->SetTransparency(50);
-    TGeoBBox* bp_fy       = new TGeoBBox("bp_fy", 0.5 / 2, 0.5 + 0.5 * activeAreaY, bp_hc_thickness / 2.);
-    TGeoVolume* vol_bp_fy = new TGeoVolume("vol_bp_fy", bp_fy, frameVolMed);
-    vol_bp_fy->SetLineColor(kViolet + 2);
-
-    // Add up all components
-    TGeoVolumeAssembly* trd_supp = new TGeoVolumeAssembly("BackPanel");
-    trd_supp->AddNode(vol_bp_hc, 1);
-    trd_supp->AddNode(vol_bp_pcb, 1, new TGeoTranslation("", 0., 0., 0.5 * (bp_hc_thickness + bp_pcb_thickness)));
-    trd_supp->AddNode(
-      vol_bp_cu, 1, new TGeoTranslation("", 0., 0., 0.5 * (bp_hc_thickness + 2 * bp_pcb_thickness + bp_cu_thickness)));
-    trd_supp->AddNode(vol_bp_fx, 1, new TGeoTranslation("", 0., 0.5 * (0.5 + activeAreaY), 0));
-    trd_supp->AddNode(vol_bp_fx, 2, new TGeoTranslation("", 0., -0.5 * (0.5 + activeAreaY), 0));
-    trd_supp->AddNode(vol_bp_fy, 1, new TGeoTranslation("", 0.5 * (0.5 + activeAreaX), 0., 0.));
-    trd_supp->AddNode(vol_bp_fy, 2, new TGeoTranslation("", -0.5 * (0.5 + activeAreaX), 0., 0.));
-    module->AddNode(
-      trd_supp, 1,
-      new TGeoTranslation("", 0., 0., gasBu_position + 0.5 * gas_thickness + pp_thickness + 0.5 * bp_hc_thickness));
-  }
-
-  // FEBs
-  // ROB FASP
-  const Double_t FASPRO_zspace    = 1.5;   // gap size between boards
-  const Double_t FASPRO_length    = 17.9;  // length of FASP FEBs in cm
-  const Double_t FASPRO_width     = 5.12;  // width of FASP FEBs in cm
-  const Double_t FASPRO_dx        = 0.01;  //
-  const Double_t FASPRO_dy        = 0.28;  //
-  const Double_t FASPRO_thickness = 0.17;
-  const Double_t FASPRO_position  = bp_position + bp_thickness + FASPRO_zspace;
-  const Double_t GETS_length      = 13.9;  // length of PolarFire FEBs in cm
-  const Double_t GETS_width       = 5.12;  // width of PolarFire FEBs in cm
-  const Double_t GETS_thickness   = 0.2;
-  const Double_t GA01_length      = 5.;   // length of LV FEBs in cm
-  const Double_t GA01_width       = 5.1;  // width of LV FEBs in cm
-  const Double_t GA01_thickness   = 0.2;
-
-  // ASIC parameters
-  const Double_t fasp_size[]     = {1.2, 1.2, 0.2};  // FASP package and interposer size 1.5x1.5 cm2
-  const Double_t faspConn_size[] = {2.1, 0.3, 0.6};  // FASP package and interposer size 1.5x1.5 cm2
-  const Double_t fasp_xoffset    = 6.0;              // ASIC offset from ROC middle (horizontally)
-  const Double_t fasp_yoffset    = 1.35;             // ASIC offset from DET connector (vertical)
-  const Double_t fpga_size[]     = {1.2, 1.2, 0.2};  // PolarFire FPGA package size 1.5x1.5 cm2
-  // FMC+ connector definition
-  const Double_t FMCwidth  = 2.0;   // width of a MF FMC connector
-  const Double_t FMClength = 5.6;   // length of a MF FMC connector
-  const Double_t FMCheight = 1.13;  // height of a MF FMC connector
-  const Double_t FMCsuppD  = 0.8;   // outer radius of FMC connector side supports
-  const Double_t FMCsuppX  = 0.6;   // FMC connector side supports
-  // GETS2C-ROB3 connector boord parameters
-  const Double_t robConn_size_x = 3.9;  //15.0;
-  const Double_t robConn_size_y = 15.0;
-  //  const Double_t robConn_xoffset      =  6.0;
-  // SATA+ connector definition
-  const Double_t SATAwidth  = 0.7;  // width of a SATA connector on GA01
-  const Double_t SATAlength = 1.7;  // length of a SATA connector on GA01
-  const Double_t SATAheight = 0.8;  // height of a SATA connector on GA01
-  // GA01 connector definition
-  const Double_t BGAwidth  = 0.4;  // width of a GETS to GA01 connector
-  const Double_t BGAlength = 4.5;  // length of a GETS to GA01 connector
-  const Double_t BGAheight = 0.8;  // height of a GETS to GA01 connector
-  if (IncludeFebs) {
-    Info("create_trd2d_module_type", "make FEBs ...");
-
-    // Create all FEBs and place them in an assembly which will be added to the TRD module
-    // FASPRO board
-    TGeoBBox* faspro_bd       = new TGeoBBox("faspro_bd", FASPRO_length / 2., FASPRO_width / 2., FASPRO_thickness / 2.);
-    TGeoVolume* vol_faspro_bd = new TGeoVolume("vol_faspro_bd", faspro_bd, febVolMed);
-    vol_faspro_bd->SetLineColor(kGreen + 3);  //vol_faspro_bd->SetTransparency(50);
-    // GETS board
-    TGeoBBox* gets_bd       = new TGeoBBox("gets_bd", GETS_length / 2., GETS_width / 2., GETS_thickness / 2.);
-    TGeoVolume* vol_gets_bd = new TGeoVolume("vol_gets_bd", gets_bd, febVolMed);
-    vol_gets_bd->SetLineColor(kGreen + 3);  //vol_gets_bd->SetTransparency(50);
-    // GA01 board
-    TGeoBBox* ga01_bd       = new TGeoBBox("ga01_bd", GA01_length / 2., GA01_width / 2., GA01_thickness / 2.);
-    TGeoVolume* vol_ga01_bd = new TGeoVolume("vol_ga01_bd", ga01_bd, febVolMed);
-    vol_ga01_bd->SetLineColor(kGreen + 7);  //vol_gets_bd->SetTransparency(50);
-
-    // Create connectors
-    // FMC connector
-    TGeoBBox* fmc_conn       = new TGeoBBox("fmc_conn", 0.5 * FMClength, 0.5 * FMCwidth, 0.5 * FMCheight);
-    TGeoVolume* vol_fmc_conn = new TGeoVolume("vol_fmc_conn", fmc_conn, febVolMed);
-    vol_fmc_conn->SetLineColor(kGray + 2);
-    TGeoTube* fmc_connSupp       = new TGeoTube("fmc_connSupp", 0, 0.5 * FMCsuppD, 0.5 * FMCheight);
-    TGeoVolume* vol_fmc_connSupp = new TGeoVolume("vol_fmc_connSupp", fmc_connSupp, aluminiumVolMed);  // support Al
-    vol_fmc_connSupp->SetLineColor(kGray);
-    TGeoVolumeAssembly* fmc_connect = new TGeoVolumeAssembly("FMC");
-    fmc_connect->AddNode(vol_fmc_conn, 1);
-    fmc_connect->AddNode(vol_fmc_connSupp, 1, new TGeoTranslation("", 0.5 * FMClength + FMCsuppX, 0, 0.));
-    fmc_connect->AddNode(vol_fmc_connSupp, 2, new TGeoTranslation("", -(0.5 * FMClength + FMCsuppX), 0, 0.));
-    // SATA connectors
-    TGeoBBox* sata_conn       = new TGeoBBox("sata_conn", 0.5 * SATAwidth, 0.5 * SATAlength, 0.5 * SATAheight);
-    TGeoVolume* vol_sata_conn = new TGeoVolume("vol_sata_conn", sata_conn, febVolMed);
-    vol_sata_conn->SetLineColor(kGray + 2);
-    // BGA connectors
-    TGeoBBox* bga_conn       = new TGeoBBox("bga_conn", 0.5 * BGAwidth, 0.5 * BGAlength, 0.5 * BGAheight);
-    TGeoVolume* vol_bga_conn = new TGeoVolume("vol_bga_conn", bga_conn, febVolMed);
-    vol_bga_conn->SetLineColor(kGray + 2);
-
-    // Create GA01 board
-    TGeoVolumeAssembly* ga01 = new TGeoVolumeAssembly("GA01");
-    ga01->AddNode(vol_ga01_bd, 1);
-    Float_t sataConnPosX[] = {2, 1.2, -1.}, sataConnPosY[] = {0, 1.5, 1};
-    for (Int_t ic(-2); ic <= 2; ic++) {
-      ga01->AddNode(vol_sata_conn, ic + 2,
-                    new TGeoTranslation("", sataConnPosX[abs(ic)], (ic > 0 ? 1 : -1) * sataConnPosY[abs(ic)],
-                                        0.5 * (GA01_thickness + SATAheight)));
-    }
-    ga01->AddNode(vol_bga_conn, 1,
-                  new TGeoTranslation("", -0.5 * GA01_length + 0.5, 0, -0.5 * (GA01_thickness + BGAheight)));
-
-    // Add up all elements of FASPRO
-    TGeoVolumeAssembly* faspro = new TGeoVolumeAssembly("FASPRO");
-    faspro->AddNode(vol_faspro_bd, 1);
-    faspro->AddNode(fmc_connect, 0, new TGeoTranslation("", 0, 0, 0.5 * FMCheight + 0.5 * FASPRO_thickness));
-    Double_t GETS_zpos = 0.5 * FASPRO_thickness + FMCheight + 0.5 * GETS_thickness;
-    faspro->AddNode(vol_gets_bd, 1, new TGeoTranslation("", 0, 0, GETS_zpos));
-    Double_t GA01_zpos = GETS_zpos + 0.5 * GETS_thickness + BGAheight + 0.5 * GA01_thickness;
-    faspro->AddNode(ga01, 1, new TGeoTranslation("", 0.5 * GETS_length + 0.5 * GA01_length - 1., 0, GA01_zpos));
-
-    // ASICs
-    if (IncludeAsics) {
-      Info("create_trd2d_module_type", "make ASICs ...");
-      TGeoBBox* fasp_asic       = new TGeoBBox("fasp_asic", 0.5 * fasp_size[0], 0.5 * fasp_size[1], 0.5 * fasp_size[2]);
-      TGeoVolume* vol_fasp_asic = new TGeoVolume("FASP", fasp_asic, padpcbVolMed);
-      vol_fasp_asic->SetLineColor(kBlack);
-      TGeoBBox* fasp_conn =
-        new TGeoBBox("fasp_conn", 0.5 * faspConn_size[0], 0.5 * faspConn_size[1], 0.5 * faspConn_size[2]);
-      TGeoVolume* vol_fasp_conn = new TGeoVolume("fasp_conn", fasp_conn, padpcbVolMed);
-      vol_fasp_conn->SetLineColor(kRed + 4);
-      for (Int_t cAsic(-1), iAsic(0); cAsic <= 1; cAsic++) {
-        faspro->AddNode(vol_fasp_asic, iAsic,
-                        new TGeoTranslation("", cAsic * fasp_xoffset, fasp_yoffset,
-                                            -1 * (0.5 * FASPRO_thickness + 0.5 * fasp_size[2])));
-        faspro->AddNode(vol_fasp_conn, iAsic,
-                        new TGeoTranslation("", cAsic * fasp_xoffset, 0.5 * FASPRO_width - 0.2 - 0.5 * faspConn_size[1],
-                                            -1 * (0.5 * FASPRO_thickness + 0.5 * faspConn_size[2])));
-        iAsic++;
-        faspro->AddNode(vol_fasp_asic, iAsic,
-                        new TGeoTranslation("", cAsic * fasp_xoffset, -fasp_yoffset,
-                                            -1 * (0.5 * FASPRO_thickness + 0.5 * fasp_size[2])));
-        faspro->AddNode(vol_fasp_conn, iAsic,
-                        new TGeoTranslation("", cAsic * fasp_xoffset,
-                                            -(0.5 * FASPRO_width - 0.2 - 0.5 * faspConn_size[1]),
-                                            -1 * (0.5 * FASPRO_thickness + 0.5 * faspConn_size[2])));
-        iAsic++;
-      }
-
-      TGeoBBox* fpga_asic       = new TGeoBBox("fpga_asic", 0.5 * fpga_size[0], 0.5 * fpga_size[1], 0.5 * fpga_size[2]);
-      TGeoVolume* vol_fpga_asic = new TGeoVolume("FPGA", fpga_asic, asicVolMed);
-      vol_fpga_asic->SetLineColor(kBlack);
-      faspro->AddNode(vol_fpga_asic, 0,
-                      new TGeoTranslation("", 0, -fasp_yoffset, GETS_zpos + 0.5 * GETS_thickness + 0.5 * fpga_size[2]));
-      faspro->AddNode(vol_fpga_asic, 1,
-                      new TGeoTranslation("", 0, fasp_yoffset, GETS_zpos + 0.5 * GETS_thickness + 0.5 * fpga_size[2]));
-    }
-    // supports for electronics
-    TGeoBBox* faspro_fy       = new TGeoBBox("faspro_fy", 0.4 / 2, 0.5 + 0.5 * activeAreaY, 0.5 * FASPRO_zspace);
-    TGeoVolume* vol_faspro_fy = new TGeoVolume("faspro_fy", faspro_fy, frameVolMed);
-    vol_faspro_fy->SetLineColor(kViolet + 2);  //vol_faspro_fy->SetTransparency(50);
-
-    // now go on with FEB placement
-    TGeoVolumeAssembly* vol_feb = new TGeoVolumeAssembly("FEB");  // the mother volume of all FEBs
-    if (moduleType == 9) {                                        // define ROB placement fot large 2D chamber
-      Int_t cFeb(1);
-      for (Int_t iFeb(0); cFeb < 2; cFeb++) {
-        vol_feb->AddNode(vol_faspro_fy, cFeb + 1,
-                         new TGeoTranslation("", (cFeb - 0.5) * (FASPRO_length + FASPRO_dx) - FASPRO_length / 3, 0.,
-                                             -0.5 * (FASPRO_thickness + FASPRO_zspace)));
-        for (Int_t rFeb(1); rFeb < 5; rFeb++) {
-          // the upper side ...
-          //         vol_feb->AddNode(faspro, iFeb++,
-          //                           new TGeoTranslation("", cFeb*(FASPRO_length+FASPRO_dx), (rFeb+0.5)*(FASPRO_width+FASPRO_dy), 0));
-          // the bottom side ...
-          vol_feb->AddNode(faspro, iFeb++,
-                           new TGeoTranslation("", cFeb * (FASPRO_length + FASPRO_dx) - FASPRO_length / 3.,
-                                               -(rFeb + 0.5) * (FASPRO_width + FASPRO_dy) + FASPRO_width / 2, 0));
-        }
-      }
-      vol_feb->AddNode(vol_faspro_fy, cFeb + 1,
-                       new TGeoTranslation("", (cFeb - 0.5) * (FASPRO_length + FASPRO_dx) - FASPRO_length / 3., 0.,
-                                           -0.5 * (FASPRO_thickness + FASPRO_zspace)));
-    }
-    else {  // define ROB placement fot small 2D hybrid chamber
-      TGeoRotation* faspro_rot = new TGeoRotation("faspro_rot");
-      faspro_rot->RotateX(180.);
-      faspro_rot->RegisterYourself();
-      TGeoTranslation* faspro_pos = new TGeoTranslation("", -4, 1.5 * FASPRO_width, -FASPRO_zspace);
-      TGeoHMatrix* faspro_mx      = new TGeoHMatrix("");
-      (*faspro_mx)                = (*faspro_pos) * (*faspro_rot);
-      vol_feb->AddNode(faspro, 5, faspro_mx);
-    }
-
-    if (IncludeRobs) {
-      Info("create_trd2d_module_type", "make ROBs ...");
-      TGeoVolumeAssembly* crob = new TGeoVolumeAssembly("C-ROB");
-      TGeoBBox* crob_bd        = new TGeoBBox("crob_bd", rob_size_x / 2., rob_size_y / 2., rob_thickness / 2.);
-      TGeoVolume* vol_crob_bd  = new TGeoVolume("crob_bd", crob_bd, febVolMed);  // the ROB made of PCB
-      vol_crob_bd->SetLineColor(kRed + 8);                                       // set color
-      TGeoRotation* crob_fmc_rot = new TGeoRotation("crob_fmc_rot");
-      crob_fmc_rot->RotateZ(90.);
-      crob_fmc_rot->RegisterYourself();
-      TGeoTranslation* crob_fmc_tra = new TGeoTranslation("crob_fmc_tra", 0., 0.5 * (FMCwidth - robConn_size_x) + 0.2,
-                                                          0.5 * (FMCheight + rob_thickness));
-      crob_fmc_tra->RegisterYourself();
-      TGeoHMatrix* crob_fmc_transform = new TGeoHMatrix("");
-      (*crob_fmc_transform)           = (*crob_fmc_rot) * (*crob_fmc_tra);
-      // Add GETS - CROB interface
-      TGeoBBox* crob_addapt = new TGeoBBox("crob_addapt", robConn_size_x / 2., robConn_size_y / 2., rob_thickness / 2.);
-      TGeoVolume* vol_crob_addapt = new TGeoVolume("crob_addapt", crob_addapt, febVolMed);  // the ROB made of PCB
-      vol_crob_addapt->SetLineColor(kRed + 6);                                              // set color
-      crob->AddNode(vol_crob_addapt, 0);
-      crob->AddNode(fmc_connect, 1, crob_fmc_transform);
-      crob->AddNode(vol_crob_bd, 1,
-                    new TGeoTranslation("", -0.5 * (rob_size_x - robConn_size_x) + 1.5, 0., FMCheight + rob_thickness));
-
-      // GBTXs
-      TGeoBBox* crob_gbtx       = new TGeoBBox("crob_gbtx", gbtx_width / 2., gbtx_width / 2., gbtx_thickness / 2.);
-      TGeoVolume* vol_crob_gbtx = new TGeoVolume("crob_gbtx", crob_gbtx, asicVolMed);
-      vol_crob_gbtx->SetLineColor(kGreen);
-      //place 3 GBTXs on each C-ROC
-      Double_t gbtx_pos_x = 0.5 * (-rob_size_x + gbtx_width) - 1.5 /*-0.5*/;
-      Double_t gbtx_pos_y = 0.5 * (rob_size_y - gbtx_width) - 0.5;
-      crob->AddNode(vol_crob_gbtx, 0,
-                    new TGeoTranslation("", gbtx_pos_x, gbtx_pos_y, FMCheight + rob_thickness + 0.5 * gbtx_thickness));
-      crob->AddNode(vol_crob_gbtx, 1,
-                    new TGeoTranslation("", gbtx_pos_x, -gbtx_pos_y, FMCheight + rob_thickness + 0.5 * gbtx_thickness));
-      crob->AddNode(vol_crob_gbtx, 2,
-                    new TGeoTranslation("", gbtx_pos_x + 5., 0., FMCheight + rob_thickness + 0.5 * gbtx_thickness));
-      //       Info("create_trd2d_module_type", "place ROBs ...");
-      //       // now go on with ROB placement
-      //       Int_t nofRobs = RobsPerModule[ 2 ], nofRobsHalf(nofRobs/2);
-      //       for (Int_t iRob = 0, jRob(0); iRob < nofRobsHalf; iRob++) {
-      //         printf("ROB[%d]\n", iRob);
-      //         Double_t rob_pos   = (iRob + 0.5) / nofRobsHalf - 0.5,   // equal spacing of ROBs on the backpanel
-      //                  rob_pos_y = rob_pos * activeAreaY;
-      //         vol_feb->AddNode(crob, jRob++, new TGeoTranslation("",  -0.5*(FASPRO_length+FASPRO_dx), rob_pos_y, LVB_pos));
-      //         TGeoRotation *crob_rot = new TGeoRotation("crob_rot"); crob_rot->RotateZ(180.); crob_rot->RegisterYourself();
-      //         TGeoTranslation *crob_tra = new TGeoTranslation("crob_tra",  0.5*(FASPRO_length+FASPRO_dx), rob_pos_y, LVB_pos); crob_tra->RegisterYourself();
-      //         TGeoHMatrix *crob_transform = new TGeoHMatrix(""); (*crob_transform)=(*crob_tra)*(*crob_rot);
-      //         vol_feb->AddNode(crob, jRob++, crob_transform);
-      //       }
-    }  // IncludeGbtx
-
-    // put FEB box on module
-    module->AddNode(
-      vol_feb, 1,
-      new TGeoTranslation("", 0., 0., FASPRO_position));  // put febvolume at correct z position wrt to the module
-  }
-
-  return module;
-}
-
-
-Int_t copy_nr(Int_t stationNr, Int_t copyNr, Int_t isRotated, Int_t planeNr, Int_t modinplaneNr)
-{
-  if (modinplaneNr > 128)
-    printf("Warning: too many modules in this layer %02d (max 128 according to "
-           "CbmTrdAddress)\n",
-           planeNr);
-
-  return (stationNr * 100000000  // 1 digit
-          + copyNr * 1000000     // 2 digit
-          + isRotated * 100000   // 1 digit
-          + planeNr * 1000       // 2 digit
-          + modinplaneNr * 1);   // 3 digit
-}
-
-void create_detector_layers(Int_t layerId)
-{
-  Int_t module_id = 0;
-  Int_t layerType = LayerType[layerId] / 10;  // this is also a station number
-  Int_t isRotated = LayerType[layerId] % 10;  // is 1 for layers 2,4, ...
-
-  TGeoRotation* module_rotation = new TGeoRotation();
-
-  Int_t stationNr = layerType;
-
-  // rotation is now done in the for loop for each module individually
-  //  if ( isRotated == 1 ) {
-  //    module_rotation = new TGeoRotation();
-  //    module_rotation->RotateZ(90.);
-  //  } else {
-  //    module_rotation = new TGeoRotation();
-  //    module_rotation->RotateZ( 0.);
-  //  }
-
-  Int_t innerarray_size1 = LayerArraySize[layerType - 1][0];
-  Int_t innerarray_size2 = LayerArraySize[layerType - 1][1];
-  const Int_t* innerLayer;
-
-  Int_t outerarray_size1 = LayerArraySize[layerType - 1][2];
-  Int_t outerarray_size2 = LayerArraySize[layerType - 1][3];
-  const Int_t* outerLayer;
-
-  if (1 == layerType) {
-    innerLayer = (Int_t*) layer1i;
-    outerLayer = (Int_t*) layer1o;
-  }
-  else if (2 == layerType) {
-    innerLayer = (Int_t*) layer2i;
-    outerLayer = (Int_t*) layer2o;
-  }
-  else if (3 == layerType) {
-    innerLayer = (Int_t*) layer3i;
-    outerLayer = (Int_t*) layer3o;
-  }
-  else {
-    std::cout << "Type of layer not known" << std::endl;
-  }
-  Info("create_detector_layers", "Layer id(%d) type(%d)", layerId, layerType);
-
-  // add layer keeping volume
-  TString layername = Form("layer%02d", PlaneId[layerId]);
-  TGeoVolume* layer = new TGeoVolumeAssembly(layername);
-
-  // compute layer copy number
-  Int_t i = LayerType[layerId] / 10 * 10000    // 1 digit  // fStation
-            + LayerType[layerId] % 10 * 1000   // 1 digit  // isRotated
-            + LayerNrInStation[layerId] * 100  // 1 digit  // fLayer
-            + PlaneId[layerId];  // 2 digits // fPlane   // layer type as leading digit in copy number of layer
-  gGeoMan->GetVolume(geoVersion)->AddNode(layer, i);
-
-  //  Int_t i = 100 + PlaneId[layerId];
-  //  gGeoMan->GetVolume(geoVersion)->AddNode(layer, 1);
-  //  cout << layername << endl;
-
-  Double_t ExplodeScale = 1.00;
-  if (DoExplode)  // if explosion, set scale
-    ExplodeScale = ExplodeFactor;
-
-  Int_t modId = 0;  // module id, only within this layer
-
-  Int_t copyNrIn[4] = {0, 0, 0, 0};  // copy number for each module type
-  for (Int_t type = 1; type <= 4; type++) {
-    for (Int_t j = (innerarray_size1 - 1); j >= 0; j--) {  // start from the bottom
-      for (Int_t i = 0; i < innerarray_size2; i++) {
-        module_id = *(innerLayer + (j * innerarray_size2 + i));
-        if (module_id / 100 == type) {
-          Info("create_detector_layers", "add module[%d] of type[%d]", module_id, type);
-          Int_t y = -(j - 2);
-          Int_t x = i - 2;
-
-          // displacement
-          Double_t dx = 0;
-          Double_t dy = 0;
-          Double_t dz = 0;
-
-          if (DisplaceRandom) {
-            dx = (r3.Rndm() - .5) * 2 * maxdx;  // max +- 0.1 cm shift
-            dy = (r3.Rndm() - .5) * 2 * maxdy;  // max +- 0.1 cm shift
-            dz = (r3.Rndm() - .5) * 2 * maxdz;  // max +- 1.0 cm shift
-          }
-
-          Double_t xPos = DetectorSizeX[0] * x * ExplodeScale + dx;
-          Double_t yPos = DetectorSizeY[0] * y * ExplodeScale + dy;
-          copyNrIn[type - 1]++;
-          modId++;
-
-          // statistics per layer and module type
-          ModuleStats[layerId][type - 1]++;
-
-          //          Int_t copy = copy_nr_modid(stationNr, layerNrInStation, copyNrIn[type - 1], PlaneId[layerId], modId);  // with modID
-          //          Int_t copy = copy_nr(stationNr, copyNrIn[type - 1], isRotated, PlaneId[layerId], modId);
-
-          // take care of FEB orientation - away from beam
-          Int_t copy      = 0;
-          module_rotation = new TGeoRotation();  // need to renew rotation to start from 0 degree angle
-          if (isRotated == 0)                    // layer 1,3 ...
-          {
-            copy = copy_nr(stationNr, copyNrIn[type - 1], module_id / 10 % 10, PlaneId[layerId], modId);
-            module_rotation->RotateZ(
-              (module_id / 10 % 10) * 90.);  // rotate module by   0 or 180 degrees, see layer[1-3][i,o] - vertical pads
-          }
-          else  // layer 2,4 ...
-          {
-            copy = copy_nr(stationNr, copyNrIn[type - 1], module_id % 10, PlaneId[layerId], modId);
-            module_rotation->RotateZ(
-              (module_id % 10) * 90.);  // rotate module by  90 or 270 degrees, see layer[1-3][i,o] - horizontal pads
-          }
-
-          // rotation
-          Double_t drotx = 0;
-          Double_t droty = 0;
-          Double_t drotz = 0;
-
-          if (RotateRandom) {
-            drotx = (r3.Rndm() - .5) * 2 * maxdrotx;
-            droty = (r3.Rndm() - .5) * 2 * maxdroty;
-            drotz = (r3.Rndm() - .5) * 2 * maxdrotz;
-
-            module_rotation->RotateZ(drotz);
-            module_rotation->RotateY(droty);
-            module_rotation->RotateX(drotx);
-          }
-
-          TGeoCombiTrans* module_placement =
-            new TGeoCombiTrans(xPos, yPos, LayerPosition[layerId] + LayerThickness / 2 + dz,
-                               module_rotation);  // shift by half layer thickness
-          //          gGeoMan->GetVolume(geoVersion)->AddNode(gModules[type - 1], copy, module_placement);
-          // add module to layer
-          gGeoMan->GetVolume(layername)->AddNode(gModules[type - 1], copy, module_placement);
-          //
-        }
-      }
-    }
-  }
-
-  Int_t copyNrOut[4] = {0, 0, 0, 0};  // copy number for each module type
-  for (Int_t type = 5; type <= 8; type++) {
-    for (Int_t j = (outerarray_size1 - 1); j >= 0; j--) {  // start from the bottom
-      for (Int_t i = 0; i < outerarray_size2; i++) {
-        module_id = *(outerLayer + (j * outerarray_size2 + i));
-        if (module_id / 100 == type) {
-          Info("create_detector_layers", "add module[%d] of type[%d]", module_id, type);
-          Int_t y = -(j - 4);
-          Int_t x = i - 5;
-
-          // displacement
-          Double_t dx = 0;
-          Double_t dy = 0;
-          Double_t dz = 0;
-
-          if (DisplaceRandom) {
-            dx = (r3.Rndm() - .5) * 2 * maxdx;  // max +- 0.1 cm shift
-            dy = (r3.Rndm() - .5) * 2 * maxdy;  // max +- 0.1 cm shift
-            dz = (r3.Rndm() - .5) * 2 * maxdz;  // max +- 1.0 cm shift
-          }
-
-          Double_t xPos = DetectorSizeX[1] * x * ExplodeScale + dx;
-          Double_t yPos = DetectorSizeY[1] * y * ExplodeScale + dy;
-          copyNrOut[type - 5]++;
-          modId++;
-
-          // statistics per layer and module type
-          ModuleStats[layerId][type - 1]++;
-
-          //          Int_t copy = copy_nr_modid(stationNr, layerNrInStation, copyNrOut[type - 5],  PlaneId[layerId], modId);  // with modID
-          //          Int_t copy = copy_nr(stationNr, copyNrOut[type - 5], isRotated, PlaneId[layerId], modId);
-
-          // take care of FEB orientation - away from beam
-          Int_t copy      = 0;
-          module_rotation = new TGeoRotation();  // need to renew rotation to start from 0 degree angle
-          if (isRotated == 0)                    // layer 1,3 ...
-          {
-            copy = copy_nr(stationNr, copyNrOut[type - 5], module_id / 10 % 10, PlaneId[layerId], modId);
-            module_rotation->RotateZ(
-              (module_id / 10 % 10) * 90.);  // rotate module by   0 or 180 degrees, see layer[1-3][i,o] - vertical pads
-          }
-          else  // layer 2,4 ...
-          {
-            copy = copy_nr(stationNr, copyNrOut[type - 5], module_id % 10, PlaneId[layerId], modId);
-            module_rotation->RotateZ(
-              (module_id % 10) * 90.);  // rotate module by  90 or 270 degrees, see layer[1-3][i,o] - horizontal pads
-          }
-
-          // rotation
-          Double_t drotx = 0;
-          Double_t droty = 0;
-          Double_t drotz = 0;
-
-          if (RotateRandom) {
-            drotx = (r3.Rndm() - .5) * 2 * maxdrotx;
-            droty = (r3.Rndm() - .5) * 2 * maxdroty;
-            drotz = (r3.Rndm() - .5) * 2 * maxdrotz;
-
-            module_rotation->RotateZ(drotz);
-            module_rotation->RotateY(droty);
-            module_rotation->RotateX(drotx);
-          }
-
-          Double_t frameref_angle = 0;
-          Double_t layer_angle    = 0;
-
-          cout << "layer " << layerId << " ---" << endl;
-          frameref_angle = atan((DetectorSizeX[1] / 2. - FrameWidth[1]) / (zfront[setupid] + 3 * LayerThickness));
-          //          frameref_angle = 15. / 180. * acos(-1);  // set a fixed reference angle
-          cout << "reference angle " << frameref_angle * 180 / acos(-1) << endl;
-
-          layer_angle = atan((DetectorSizeX[1] / 2. - FrameWidth[1]) / (zfront[setupid] + layerId * LayerThickness));
-          cout << "layer     angle " << layer_angle * 180 / acos(-1) << endl;
-          // DEDE
-          // xPos = tan( frameref_angle ) * (zfront[setupid] + layerId * LayerThickness) - (DetectorSizeX[1]/2. - FrameWidth[1]);  // shift module along x-axis
-          xPos = 0;
-          cout << "layer " << layerId << " - xPos " << xPos << endl;
-
-          layer_angle =
-            atan((DetectorSizeX[1] / 2. - FrameWidth[1] + xPos) / (zfront[setupid] + layerId * LayerThickness));
-          cout << "corrected angle " << layer_angle * 180 / acos(-1) << endl;
-
-
-          //          Double_t frameangle[4] = {0};
-          //          for ( Int_t ilayer = 3; ilayer >= 0; ilayer--)
-          //          {
-          //            frameangle[ilayer] = atan( (DetectorSizeX[1]/2. - FrameWidth[1]) / (zfront[setupid] + ilayer * LayerThickness) );
-          //            cout << "layer " << ilayer << " - angle " << frameangle[ilayer] * 180 / acos(-1) << endl;
-          //
-          //            xPos = (DetectorSizeX[1]/2. - FrameWidth[1]);
-          //            cout << "layer " << ilayer << " - xPos " << xPos << endl;
-          //
-          //            xPos = tan( frameangle[3] ) * (zfront[setupid] + ilayer * LayerThickness);
-          //            cout << "layer " << ilayer << " - xPos " << xPos << endl;
-          //
-          //            xPos = (DetectorSizeX[1]/2. - FrameWidth[1])  - ( tan( frameangle[3] ) * (zfront[setupid] + ilayer * LayerThickness) );   // shift module along x-axis
-          //            cout << "layer " << ilayer << " - xPos " << xPos << endl;
-          //	  }
-
-
-          TGeoCombiTrans* module_placement =
-            new TGeoCombiTrans(xPos, yPos, LayerPosition[layerId] + LayerThickness / 2 + dz,
-                               module_rotation);  // shift by half layer thickness
-
-          // add module to layer
-          gGeoMan->GetVolume(layername)->AddNode(gModules[type - 1], copy, module_placement);
-          //
-        }
-      }
-    }
-  }
-
-  //install TRD2D detectors in the TRD setup
-  Int_t type = -1;
-  if (layerId == 2 && layerType == 2) type = 10;
-  if (layerId == 3 && layerType == 2) type = 9;
-  if (type < 0) return;
-  Info("create_detector_layers", "add module[0x%p] of type[%d]", (void*) gModules[type - 1], type);
-
-  // Set positions of the TRD2D wrt front TRD1D
-  Double_t xPos = 0.5 * DetectorSizeX[2];
-
-  Double_t yPos = 2.5 * 5.12;  // check with FASPRO_width;
-
-  // statistics per layer and module type
-  ModuleStats[layerId][type - 1]++;
-
-  module_rotation = new TGeoRotation();
-  TGeoCombiTrans* module_placement =
-    new TGeoCombiTrans(xPos, yPos, LayerPosition[0] - (layerId - 1) * LayerThickness / 2,
-                       module_rotation);  // shift by half layer thickness
-  Int_t copy = copy_nr(1, 1, 0, PlaneId[layerId], 1);
-  gGeoMan->GetVolume(layername)->AddNode(gModules[type - 1], copy, module_placement);
-}
-
-
-void create_mag_field_vector()
-{
-  const TString cbmfield_01 = "cbm_field";
-  TGeoVolume* cbmfield_1    = new TGeoVolumeAssembly(cbmfield_01);
-
-  TGeoMedium* copperVolMed = gGeoMan->GetMedium(PadCopperVolumeMedium);  // define Volume Medium
-
-  TGeoRotation* rotx090 = new TGeoRotation("rotx090");
-  rotx090->RotateX(90.);  // rotate  90 deg around x-axis
-  TGeoRotation* rotx270 = new TGeoRotation("rotx270");
-  rotx270->RotateX(270.);  // rotate 270 deg around x-axis
-
-  Int_t tube_length = 500;
-  Int_t cone_length = 120;
-  Int_t cone_width  = 280;
-
-  // field tube
-  TGeoTube* trd_field          = new TGeoTube("", 0., 100 / 2., tube_length / 2.);
-  TGeoVolume* trdmod1_fieldvol = new TGeoVolume("tube", trd_field, copperVolMed);
-  trdmod1_fieldvol->SetLineColor(kRed);
-  trdmod1_fieldvol->SetTransparency(30);                                   // transparency for the TRD
-  TGeoTranslation* trd_field_trans = new TGeoTranslation("", 0., 0., 0.);  // tube position
-  cbmfield_1->AddNode(trdmod1_fieldvol, 1, trd_field_trans);
-
-  // field cone
-  TGeoCone* trd_cone          = new TGeoCone("", cone_length / 2., 0., cone_width / 2., 0., 0.);
-  TGeoVolume* trdmod1_conevol = new TGeoVolume("cone", trd_cone, copperVolMed);
-  trdmod1_conevol->SetLineColor(kRed);
-  trdmod1_conevol->SetTransparency(30);  // transparency for the TRD
-  TGeoTranslation* trd_cone_trans = new TGeoTranslation("", 0., 0., (tube_length + cone_length) / 2.);  // cone position
-  cbmfield_1->AddNode(trdmod1_conevol, 1, trd_cone_trans);
-
-  TGeoCombiTrans* field_combi01 = new TGeoCombiTrans(0., 0., 40., rotx270);  // point in +y direction
-  gGeoMan->GetVolume(geoVersion)->AddNode(cbmfield_1, 1, field_combi01);
-
-  //   TGeoCombiTrans* field_combi02 = new TGeoCombiTrans( 200., 0., 0., rotx090);   // point in -y direction
-  //   gGeoMan->GetVolume(geoVersion)->AddNode(cbmfield_1, 2, field_combi02);
-}
-
-
-void create_gibbet_support()
-{
-  const TString gibbet_01 = "gibbet_bars_trd1";
-  TGeoVolume* gibbet_1    = new TGeoVolumeAssembly(gibbet_01);
-
-  TGeoBBox* gibbet1;
-  TGeoBBox* gibbet2;
-  TGeoBBox* gibbet3;
-  TGeoBBox* gibbet4;
-
-  TGeoVolume* gibbet1_vol;
-  TGeoVolume* gibbet2_vol;
-  TGeoVolume* gibbet3_vol;
-  TGeoVolume* gibbet4_vol;
-
-  TGeoTranslation* gibbet1_trans;
-  TGeoTranslation* gibbet2_trans;
-  TGeoTranslation* gibbet3_trans;
-  TGeoTranslation* gibbet4_trans;
-  TGeoTranslation* gibbet5_trans;
-
-  Int_t x_offset = 0.0;  // x position of gibbet rim towards module
-  //  Int_t x_offset = -10.0; // x position of gibbet rim towards module
-
-  const Int_t kColor1010n = kAzure + 8;  // gibbet color
-  const Int_t kColor1010s = kGray;       // gibbet color
-  const Int_t kColor0305n = kBlue;       // gibbet color
-
-  TGeoMedium* k1010nVolMed = gGeoMan->GetMedium(Kanya10x10nVolumeMedium);
-  TGeoMedium* k1010sVolMed = gGeoMan->GetMedium(Kanya10x10sVolumeMedium);
-  TGeoMedium* k0305nVolMed = gGeoMan->GetMedium(Kanya03x05nVolumeMedium);
-
-  const Int_t kanya01 = 105;  // kanyahoritop
-  const Int_t kanya02 = 90;   // kanyavertnear
-  const Int_t kanya03 = 150;  // kanyavertpill
-
-  const Int_t gapx     = 5;  // gap in x direction
-  const Int_t gapy     = 2;  // gap in y direction
-  const Int_t gapxpill = 2;  // gap in x direction between vertical pillars
-
-  // horizontal gibbet 2020
-  gibbet1     = new TGeoBBox("gibbet1", kanya01 / 2., gibbet_width / 2., gibbet_thickness / 2.);
-  gibbet1_vol = new TGeoVolume("gibbetvol1", gibbet1, k1010nVolMed);
-  gibbet1_vol->SetLineColor(kColor1010n);
-
-  // translations
-  gibbet1_trans = new TGeoTranslation("", (kanya01 - DetectorSizeX[1]) / 2. - gapx + x_offset,
-                                      (DetectorSizeY[1] + gibbet_width) / 2. + gapy, 0.);
-  gibbet_1->AddNode(gibbet1_vol, 1, gibbet1_trans);
-
-  // vertical gibbet 2020
-  gibbet2     = new TGeoBBox("gibbet2", gibbet_width / 2., kanya02 / 2., gibbet_thickness / 2.);
-  gibbet2_vol = new TGeoVolume("gibbetvol2", gibbet2, k1010nVolMed);
-  gibbet2_vol->SetLineColor(kColor1010n);
-
-  // translations
-  gibbet2_trans = new TGeoTranslation("", -(DetectorSizeX[1] + gibbet_width) / 2. - gapx + x_offset,
-                                      (DetectorSizeY[1] - kanya02) / 2. + gapy + 2 * gibbet_width, 0.);
-  gibbet_1->AddNode(gibbet2_vol, 2, gibbet2_trans);
-
-  // vertical gibbet pillar 2020
-  gibbet3     = new TGeoBBox("gibbet3", gibbet_width / 2., kanya03 / 2., gibbet_thickness / 2.);
-  gibbet3_vol = new TGeoVolume("gibbetvol3", gibbet3, k1010sVolMed);
-  gibbet3_vol->SetLineColor(kColor1010s);
-
-  // translations
-  gibbet3_trans =
-    new TGeoTranslation("", -(DetectorSizeX[1] + 3 * gibbet_width) / 2. - gapx - gapxpill + x_offset, 0., 0.);
-  gibbet_1->AddNode(gibbet3_vol, 3, gibbet3_trans);
-
-  // vertical mount rails 2020
-  gibbet4     = new TGeoBBox("gibbet4", rail_width / 2., (DetectorSizeY[1] + gapy) / 2., rail_thickness / 2.);
-  gibbet4_vol = new TGeoVolume("gibbetvol4", gibbet4, k0305nVolMed);
-  gibbet4_vol->SetLineColor(kColor0305n);
-
-  // translations
-  gibbet4_trans = new TGeoTranslation("", -(DetectorSizeX[1] - rail_width) / 2. + x_offset, +gapy / 2., 0.);
-  gibbet_1->AddNode(gibbet4_vol, 4, gibbet4_trans);
-
-  // translations
-  gibbet5_trans = new TGeoTranslation("", (DetectorSizeX[1] - rail_width) / 2. + x_offset, +gapy / 2., 0.);
-  gibbet_1->AddNode(gibbet4_vol, 5, gibbet5_trans);
-
-  Int_t l;
-  for (l = 0; l < 4; l++)
-    if ((ShowLayer[l]) && (BusBarOrientation[l] == 1))  // if geometry contains layer l
-    {
-      TString layername = Form("layer%02d", l + 1);
-      TGeoTranslation* gibbet_placement =
-        new TGeoTranslation(0, 0, LayerPosition[l] + LayerThickness / 2. + gibbet_position);
-      gGeoMan->GetVolume(layername)->AddNode(gibbet_1, l, gibbet_placement);
-    }
-}
-
-
-void create_power_bars_vertical()
-{
-  const TString power_01 = "power_bars_trd1";
-  TGeoVolume* power_1    = new TGeoVolumeAssembly(power_01);
-
-  TGeoBBox* power1;
-  TGeoBBox* power2;
-
-  TGeoVolume* power1_vol;
-  TGeoVolume* power2_vol;
-
-  TGeoTranslation* power1_trans;
-  TGeoTranslation* power2_trans;
-
-  const Int_t kColor = kBlue;  // bus bar color
-
-  TGeoMedium* powerBusVolMed = gGeoMan->GetMedium(PowerBusVolumeMedium);
-
-  // powerbus - horizontal short
-  power1     = new TGeoBBox("power1", (DetectorSizeX[1] - DetectorSizeX[0] - powerbar_width) / 2., powerbar_width / 2.,
-                        powerbar_thickness / 2.);
-  power1_vol = new TGeoVolume("powerbus1", power1, powerBusVolMed);
-  power1_vol->SetLineColor(kColor);
-
-  // translations
-  power1_trans = new TGeoTranslation("", 1 * (DetectorSizeX[1] - DetectorSizeY[0] / 2.), 1.5 * DetectorSizeY[1], 0.);
-  power_1->AddNode(power1_vol, 1, power1_trans);
-
-  power1_trans = new TGeoTranslation("", -1 * (DetectorSizeX[1] - DetectorSizeY[0] / 2.), -1.5 * DetectorSizeY[1], 0.);
-  power_1->AddNode(power1_vol, 2, power1_trans);
-
-  // powerbus - horizontal long
-  power1 =
-    new TGeoBBox("power1", (DetectorSizeX[0] - powerbar_width) / 2., powerbar_width / 2., powerbar_thickness / 2.);
-  power1_vol = new TGeoVolume("powerbus1", power1, powerBusVolMed);
-  power1_vol->SetLineColor(kColor);
-
-  // translations
-  power1_trans = new TGeoTranslation("", -1 * DetectorSizeX[0], 1.5 * DetectorSizeY[1], 0.);
-  power_1->AddNode(power1_vol, 3, power1_trans);
-
-  power1_trans = new TGeoTranslation("", 1 * DetectorSizeX[0], -1.5 * DetectorSizeY[1], 0.);
-  power_1->AddNode(power1_vol, 4, power1_trans);
-
-
-  // powerbus - vertical long
-  power2 =
-    new TGeoBBox("power2", powerbar_width / 2., (5 * DetectorSizeY[1] + powerbar_width) / 2., powerbar_thickness / 2.);
-  power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed);
-  power2_vol->SetLineColor(kColor);
-
-  // translations
-  power2_trans = new TGeoTranslation("", -3.5 * DetectorSizeX[1], 0., 0.);
-  power_1->AddNode(power2_vol, 1, power2_trans);
-  power2_trans = new TGeoTranslation("", 3.5 * DetectorSizeX[1], 0., 0.);
-  power_1->AddNode(power2_vol, 2, power2_trans);
-
-  power2_trans = new TGeoTranslation("", -2.5 * DetectorSizeX[1], 0., 0.);
-  power_1->AddNode(power2_vol, 3, power2_trans);
-  power2_trans = new TGeoTranslation("", 2.5 * DetectorSizeX[1], 0., 0.);
-  power_1->AddNode(power2_vol, 4, power2_trans);
-
-  power2_trans = new TGeoTranslation("", -1.5 * DetectorSizeX[1], 0., 0.);
-  power_1->AddNode(power2_vol, 5, power2_trans);
-  power2_trans = new TGeoTranslation("", 1.5 * DetectorSizeX[1], 0., 0.);
-  power_1->AddNode(power2_vol, 6, power2_trans);
-
-  // powerbus - vertical middle
-  power2 =
-    new TGeoBBox("power2", powerbar_width / 2., (3 * DetectorSizeY[1] + powerbar_width) / 2., powerbar_thickness / 2.);
-  power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed);
-  power2_vol->SetLineColor(kColor);
-
-  // translations
-  power2_trans = new TGeoTranslation("", -1.5 * DetectorSizeX[0], 0., 0.);
-  power_1->AddNode(power2_vol, 7, power2_trans);
-  power2_trans = new TGeoTranslation("", 1.5 * DetectorSizeX[0], 0., 0.);
-  power_1->AddNode(power2_vol, 8, power2_trans);
-
-  // powerbus - vertical short 1
-  power2     = new TGeoBBox("power2", powerbar_width / 2., 1 * DetectorSizeY[1] / 2., powerbar_thickness / 2.);
-  power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed);
-  power2_vol->SetLineColor(kColor);
-  //  power2_vol->SetLineColor(kRed);
-
-  // translations
-  power2_trans = new TGeoTranslation("", -0.5 * DetectorSizeX[1], (2.0 * DetectorSizeY[1] + powerbar_width / 2.), 0.);
-  power_1->AddNode(power2_vol, 9, power2_trans);
-  power2_trans = new TGeoTranslation("", 0.5 * DetectorSizeX[1], -(2.0 * DetectorSizeY[1] + powerbar_width / 2.), 0.);
-  power_1->AddNode(power2_vol, 10, power2_trans);
-
-  // powerbus - vertical short 2
-  power2 =
-    new TGeoBBox("power2", powerbar_width / 2., (1 * DetectorSizeY[1] + powerbar_width) / 2., powerbar_thickness / 2.);
-  power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed);
-  power2_vol->SetLineColor(kColor);
-
-  // translations
-  power2_trans = new TGeoTranslation("", -0.5 * DetectorSizeX[1], -2.0 * DetectorSizeY[1], 0.);
-  power_1->AddNode(power2_vol, 11, power2_trans);
-  power2_trans = new TGeoTranslation("", 0.5 * DetectorSizeX[1], 2.0 * DetectorSizeY[1], 0.);
-  power_1->AddNode(power2_vol, 12, power2_trans);
-
-  // powerbus - vertical short 3
-  power2     = new TGeoBBox("power2", powerbar_width / 2., (2 * DetectorSizeY[0] + powerbar_width / 2.) / 2.,
-                        powerbar_thickness / 2.);
-  power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed);
-  power2_vol->SetLineColor(kColor);
-
-  // translations
-  power2_trans = new TGeoTranslation("", -0.5 * DetectorSizeX[0], (1.5 * DetectorSizeY[0] + powerbar_width / 4.), 0.);
-  power_1->AddNode(power2_vol, 11, power2_trans);
-  power2_trans = new TGeoTranslation("", 0.5 * DetectorSizeX[0], -(1.5 * DetectorSizeY[0] + powerbar_width / 4.), 0.);
-  power_1->AddNode(power2_vol, 12, power2_trans);
-
-  Int_t l;
-  for (l = 0; l < 4; l++)
-    if ((ShowLayer[l]) && (BusBarOrientation[l] == 1))  // if geometry contains layer l
-    {
-      TString layername = Form("layer%02d", l + 1);
-      TGeoTranslation* power_placement =
-        new TGeoTranslation(0, 0, LayerPosition[l] + LayerThickness / 2. + powerbar_position);
-      gGeoMan->GetVolume(layername)->AddNode(power_1, l, power_placement);
-    }
-}
-
-
-void create_power_bars_horizontal()
-{
-  const TString power_01 = "power_bars_trd1";
-  TGeoVolume* power_1    = new TGeoVolumeAssembly(power_01);
-
-  TGeoBBox* power1;
-  TGeoBBox* power2;
-
-  TGeoVolume* power1_vol;
-  TGeoVolume* power2_vol;
-
-  TGeoTranslation* power1_trans;
-  TGeoTranslation* power2_trans;
-
-  const Int_t kColor = kBlue;  // bus bar color
-
-  TGeoMedium* powerBusVolMed = gGeoMan->GetMedium(PowerBusVolumeMedium);
-
-  // powerbus - vertical short
-  power1     = new TGeoBBox("power1", powerbar_width / 2., (DetectorSizeY[1] - DetectorSizeY[0] - powerbar_width) / 2.,
-                        powerbar_thickness / 2.);
-  power1_vol = new TGeoVolume("powerbus1", power1, powerBusVolMed);
-  power1_vol->SetLineColor(kColor);
-
-  // translations
-  power1_trans = new TGeoTranslation("", 1.5 * DetectorSizeX[1], -1 * (DetectorSizeY[1] - DetectorSizeY[0] / 2.), 0.);
-  power_1->AddNode(power1_vol, 1, power1_trans);
-
-  power1_trans = new TGeoTranslation("", -1.5 * DetectorSizeX[1], 1 * (DetectorSizeY[1] - DetectorSizeY[0] / 2.), 0.);
-  power_1->AddNode(power1_vol, 2, power1_trans);
-
-  // powerbus - vertical long
-  power1 =
-    new TGeoBBox("power1", powerbar_width / 2., (DetectorSizeY[0] - powerbar_width) / 2., powerbar_thickness / 2.);
-  power1_vol = new TGeoVolume("powerbus1", power1, powerBusVolMed);
-  power1_vol->SetLineColor(kColor);
-
-  // translations
-  power1_trans = new TGeoTranslation("", 1.5 * DetectorSizeX[1], 1 * DetectorSizeY[0], 0.);
-  power_1->AddNode(power1_vol, 3, power1_trans);
-
-  power1_trans = new TGeoTranslation("", -1.5 * DetectorSizeX[1], -1 * DetectorSizeY[0], 0.);
-  power_1->AddNode(power1_vol, 4, power1_trans);
-
-
-  // powerbus - horizontal long
-  power2 =
-    new TGeoBBox("power2", (7 * DetectorSizeX[1] + powerbar_width) / 2., powerbar_width / 2., powerbar_thickness / 2.);
-  power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed);
-  power2_vol->SetLineColor(kColor);
-
-  // translations
-  power2_trans = new TGeoTranslation("", 0., -2.5 * DetectorSizeY[1], 0.);
-  power_1->AddNode(power2_vol, 1, power2_trans);
-  power2_trans = new TGeoTranslation("", 0., 2.5 * DetectorSizeY[1], 0.);
-  power_1->AddNode(power2_vol, 2, power2_trans);
-
-  power2_trans = new TGeoTranslation("", 0., -1.5 * DetectorSizeY[1], 0.);
-  power_1->AddNode(power2_vol, 3, power2_trans);
-  power2_trans = new TGeoTranslation("", 0., 1.5 * DetectorSizeY[1], 0.);
-  power_1->AddNode(power2_vol, 4, power2_trans);
-
-  // powerbus - horizontal middle
-  power2 =
-    new TGeoBBox("power2", (3 * DetectorSizeX[1] + powerbar_width) / 2., powerbar_width / 2., powerbar_thickness / 2.);
-  power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed);
-  power2_vol->SetLineColor(kColor);
-
-  // translations
-  power2_trans = new TGeoTranslation("", 0., -1.5 * DetectorSizeY[0], 0.);
-  power_1->AddNode(power2_vol, 7, power2_trans);
-  power2_trans = new TGeoTranslation("", 0., 1.5 * DetectorSizeY[0], 0.);
-  power_1->AddNode(power2_vol, 8, power2_trans);
-
-  // powerbus - horizontal short 1
-  power2     = new TGeoBBox("power2", 2 * DetectorSizeX[1] / 2., powerbar_width / 2., powerbar_thickness / 2.);
-  power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed);
-  power2_vol->SetLineColor(kColor);
-  //  power2_vol->SetLineColor(kRed);
-
-  // translations
-  power2_trans = new TGeoTranslation("", (2.5 * DetectorSizeX[1] + powerbar_width / 2.), 0.5 * DetectorSizeY[1], 0.);
-  power_1->AddNode(power2_vol, 9, power2_trans);
-  power2_trans = new TGeoTranslation("", -(2.5 * DetectorSizeX[1] + powerbar_width / 2.), -0.5 * DetectorSizeY[1], 0.);
-  power_1->AddNode(power2_vol, 10, power2_trans);
-
-  // powerbus - horizontal short 2
-  power2 =
-    new TGeoBBox("power2", (2 * DetectorSizeX[1] + powerbar_width) / 2., powerbar_width / 2., powerbar_thickness / 2.);
-  power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed);
-  power2_vol->SetLineColor(kColor);
-
-  // translations
-  power2_trans = new TGeoTranslation("", -2.5 * DetectorSizeX[1], 0.5 * DetectorSizeY[1], 0.);
-  power_1->AddNode(power2_vol, 11, power2_trans);
-  power2_trans = new TGeoTranslation("", 2.5 * DetectorSizeX[1], -0.5 * DetectorSizeY[1], 0.);
-  power_1->AddNode(power2_vol, 12, power2_trans);
-
-  // powerbus - horizontal short 3
-  power2     = new TGeoBBox("power2", (2 * DetectorSizeX[0] + powerbar_width / 2.) / 2., powerbar_width / 2.,
-                        powerbar_thickness / 2.);
-  power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed);
-  power2_vol->SetLineColor(kColor);
-
-  // translations
-  power2_trans = new TGeoTranslation("", (1.5 * DetectorSizeX[0] + powerbar_width / 4.), 0.5 * DetectorSizeY[0], 0.);
-  power_1->AddNode(power2_vol, 11, power2_trans);
-  power2_trans = new TGeoTranslation("", -(1.5 * DetectorSizeX[0] + powerbar_width / 4.), -0.5 * DetectorSizeY[0], 0.);
-  power_1->AddNode(power2_vol, 12, power2_trans);
-
-  Int_t l;
-  for (l = 0; l < 4; l++)
-    if ((ShowLayer[l]) && (BusBarOrientation[l] == 0))  // if geometry contains layer l
-    {
-      TString layername = Form("layer%02d", l + 1);
-      TGeoTranslation* power_placement =
-        new TGeoTranslation(0, 0, LayerPosition[l] + LayerThickness / 2. + powerbar_position);
-      gGeoMan->GetVolume(layername)->AddNode(power_1, l, power_placement);
-    }
-}
-
-
-void create_xtru_supports()
-{
-  const TString trd_01 = "support_trd1";
-  TGeoVolume* trd_1    = new TGeoVolumeAssembly(trd_01);
-
-  const TString trd_02 = "support_trd2";
-  TGeoVolume* trd_2    = new TGeoVolumeAssembly(trd_02);
-
-  const TString trd_03 = "support_trd3";
-  TGeoVolume* trd_3    = new TGeoVolumeAssembly(trd_03);
-
-  //  const TString trdSupport = "supportframe";
-  //  TGeoVolume* trdsupport = new TGeoVolumeAssembly(trdSupport);
-  //
-  //  trdsupport->AddNode(trd_1, 1);
-  //  trdsupport->AddNode(trd_2, 2);
-  //  trdsupport->AddNode(trd_3, 3);
-
-  TGeoMedium* aluminiumVolMed = gGeoMan->GetMedium(AluminiumVolumeMedium);  // define Volume Medium
-
-  const Double_t x[12] = {-15, -15, -1, -1, -15, -15, 15, 15, 1, 1, 15, 15};  // IPB 400
-  const Double_t y[12] = {-20, -18, -18, 18,  18,  20,
-                          20,  18,  18,  -18, -18, -20};  // 30 x 40 cm in size, 2 cm wall thickness
-  const Double_t Hwid  = -2 * x[0];                       // 30
-  const Double_t Hhei  = -2 * y[0];                       // 40
-
-  Double_t AperX[3] = {450., 550., 600.};  // inner aperture in X of support structure for stations 1,2,3
-  Double_t AperY[3] = {350., 450., 500.};  // inner aperture in Y of support structure for stations 1,2,3
-  Double_t PilPosX;
-  Double_t BarPosY;
-
-  const Double_t BeamHeight = 570;  // beamline is at 5.7m above floor
-
-  Double_t PilPosZ[6];  // PilPosZ
-                        //  PilPosZ[0] = LayerPosition[0] + LayerThickness/2.;
-                        //  PilPosZ[1] = LayerPosition[3] + LayerThickness/2.;
-                        //  PilPosZ[2] = LayerPosition[4] + LayerThickness/2.;
-                        //  PilPosZ[3] = LayerPosition[7] + LayerThickness/2.;
-                        //  PilPosZ[4] = LayerPosition[8] + LayerThickness/2.;
-                        //  PilPosZ[5] = LayerPosition[9] + LayerThickness/2.;
-
-  PilPosZ[0] = LayerPosition[0] + 15;
-  PilPosZ[1] = LayerPosition[3] - 15 + LayerThickness;
-  PilPosZ[2] = LayerPosition[4] + 15;
-  PilPosZ[3] = LayerPosition[7] - 15 + LayerThickness;
-  PilPosZ[4] = LayerPosition[8] + 15;
-  PilPosZ[5] = LayerPosition[9] - 15 + LayerThickness;
-
-  //  cout << "PilPosZ[0]: " << PilPosZ[0] << endl;
-  //  cout << "PilPosZ[1]: " << PilPosZ[1] << endl;
-
-  TGeoRotation* rotx090 = new TGeoRotation("rotx090");
-  rotx090->RotateX(90.);  // rotate  90 deg around x-axis
-  TGeoRotation* roty090 = new TGeoRotation("roty090");
-  roty090->RotateY(90.);  // rotate  90 deg around y-axis
-  TGeoRotation* rotz090 = new TGeoRotation("rotz090");
-  rotz090->RotateZ(90.);  // rotate  90 deg around y-axis
-  TGeoRotation* roty270 = new TGeoRotation("roty270");
-  roty270->RotateY(270.);  // rotate 270 deg around y-axis
-
-  TGeoRotation* rotzx01 = new TGeoRotation("rotzx01");
-  rotzx01->RotateZ(90.);  // rotate  90 deg around z-axis
-  rotzx01->RotateX(90.);  // rotate  90 deg around x-axis
-
-  //  TGeoRotation  *rotxz01 = new TGeoRotation("rotxz01");
-  //  rotxz01->RotateX(  90.); // rotate  90 deg around x-axis
-  //  rotxz01->RotateZ(  90.); // rotate  90 deg around z-axis
-
-  Double_t ang1 = atan(3. / 4.) * 180. / acos(-1.);
-  //  cout << "DEDE " << ang1 << endl;
-  //  Double_t sin1 = acos(-1.);
-  //  cout << "DEDE " << sin1 << endl;
-  TGeoRotation* rotx080 = new TGeoRotation("rotx080");
-  rotx080->RotateX(90. - ang1);  // rotate  80 deg around x-axis
-  TGeoRotation* rotx100 = new TGeoRotation("rotx100");
-  rotx100->RotateX(90. + ang1);  // rotate 100 deg around x-axis
-
-  TGeoRotation* rotxy01 = new TGeoRotation("rotxy01");
-  rotxy01->RotateX(90.);    // rotate  90 deg around x-axis
-  rotxy01->RotateZ(-ang1);  // rotate  ang1   around rotated y-axis
-
-  TGeoRotation* rotxy02 = new TGeoRotation("rotxy02");
-  rotxy02->RotateX(90.);   // rotate  90 deg around x-axis
-  rotxy02->RotateZ(ang1);  // rotate  ang1   around rotated y-axis
-
-
-  //-------------------
-  // vertical pillars (Y)
-  //-------------------
-
-  // station 1
-  if (ShowLayer[0])  // if geometry contains layer 1 (1st layer of station 1)
-  {
-    TGeoXtru* trd_H_vert1 = new TGeoXtru(2);  // define Xtrusion of 2 planes
-    trd_H_vert1->DefinePolygon(12, x, y);
-    trd_H_vert1->DefineSection(0, -(AperY[0] + Hhei), 0, 0, 1.0);
-    trd_H_vert1->DefineSection(1, BeamHeight, 0, 0, 1.0);
-    TGeoVolume* trd_H_vert_vol1 = new TGeoVolume("trd_H_y_01", trd_H_vert1, aluminiumVolMed);
-    trd_H_vert_vol1->SetLineColor(kYellow);
-    PilPosX = AperX[0];
-
-    TGeoCombiTrans* trd_H_vert_combi01 = new TGeoCombiTrans((PilPosX + Hhei / 2.), 0., PilPosZ[0], rotzx01);
-    trd_1->AddNode(trd_H_vert_vol1, 11, trd_H_vert_combi01);
-    TGeoCombiTrans* trd_H_vert_combi02 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), 0., PilPosZ[0], rotzx01);
-    trd_1->AddNode(trd_H_vert_vol1, 12, trd_H_vert_combi02);
-    TGeoCombiTrans* trd_H_vert_combi03 = new TGeoCombiTrans((PilPosX + Hhei / 2.), 0., PilPosZ[1], rotzx01);
-    trd_1->AddNode(trd_H_vert_vol1, 13, trd_H_vert_combi03);
-    TGeoCombiTrans* trd_H_vert_combi04 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), 0., PilPosZ[1], rotzx01);
-    trd_1->AddNode(trd_H_vert_vol1, 14, trd_H_vert_combi04);
-  }
-
-  // station 2
-  if (ShowLayer[4])  // if geometry contains layer 5 (1st layer of station 2)
-  {
-    TGeoXtru* trd_H_vert1 = new TGeoXtru(2);  // define Xtrusion of 2 planes
-    trd_H_vert1->DefinePolygon(12, x, y);
-    trd_H_vert1->DefineSection(0, -(AperY[1] + Hhei), 0, 0, 1.0);
-    trd_H_vert1->DefineSection(1, BeamHeight, 0, 0, 1.0);
-    TGeoVolume* trd_H_vert_vol1 = new TGeoVolume("trd_H_y_02", trd_H_vert1, aluminiumVolMed);
-    trd_H_vert_vol1->SetLineColor(kYellow);
-    PilPosX = AperX[1];
-
-    TGeoCombiTrans* trd_H_vert_combi01 = new TGeoCombiTrans((PilPosX + Hhei / 2.), 0., PilPosZ[2], rotzx01);
-    trd_2->AddNode(trd_H_vert_vol1, 21, trd_H_vert_combi01);
-    TGeoCombiTrans* trd_H_vert_combi02 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), 0., PilPosZ[2], rotzx01);
-    trd_2->AddNode(trd_H_vert_vol1, 22, trd_H_vert_combi02);
-    TGeoCombiTrans* trd_H_vert_combi03 = new TGeoCombiTrans((PilPosX + Hhei / 2.), 0., PilPosZ[3], rotzx01);
-    trd_2->AddNode(trd_H_vert_vol1, 23, trd_H_vert_combi03);
-    TGeoCombiTrans* trd_H_vert_combi04 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), 0., PilPosZ[3], rotzx01);
-    trd_2->AddNode(trd_H_vert_vol1, 24, trd_H_vert_combi04);
-  }
-
-  // station 3
-  if (ShowLayer[8])  // if geometry contains layer 9 (1st layer of station 3)
-  {
-    TGeoXtru* trd_H_vert1 = new TGeoXtru(2);  // define Xtrusion of 2 planes
-    trd_H_vert1->DefinePolygon(12, x, y);
-    trd_H_vert1->DefineSection(0, -(AperY[2] + Hhei), 0, 0, 1.0);
-    trd_H_vert1->DefineSection(1, BeamHeight, 0, 0, 1.0);
-    TGeoVolume* trd_H_vert_vol1 = new TGeoVolume("trd_H_y_03", trd_H_vert1, aluminiumVolMed);
-    trd_H_vert_vol1->SetLineColor(kYellow);
-    PilPosX = AperX[2];
-
-    TGeoCombiTrans* trd_H_vert_combi01 = new TGeoCombiTrans((PilPosX + Hhei / 2.), 0., PilPosZ[4], rotzx01);
-    trd_3->AddNode(trd_H_vert_vol1, 31, trd_H_vert_combi01);
-    TGeoCombiTrans* trd_H_vert_combi02 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), 0., PilPosZ[4], rotzx01);
-    trd_3->AddNode(trd_H_vert_vol1, 32, trd_H_vert_combi02);
-    TGeoCombiTrans* trd_H_vert_combi03 = new TGeoCombiTrans((PilPosX + Hhei / 2.), 0., PilPosZ[5], rotzx01);
-    trd_3->AddNode(trd_H_vert_vol1, 33, trd_H_vert_combi03);
-    TGeoCombiTrans* trd_H_vert_combi04 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), 0., PilPosZ[5], rotzx01);
-    trd_3->AddNode(trd_H_vert_vol1, 34, trd_H_vert_combi04);
-  }
-
-
-  //-------------------
-  // horizontal supports (X)
-  //-------------------
-
-  // station 1
-  if (ShowLayer[0])  // if geometry contains layer 1 (1st layer of station 1)
-  {
-    TGeoXtru* trd_H_hori1 = new TGeoXtru(2);  // define Xtrusion of 2 planes
-    trd_H_hori1->DefinePolygon(12, x, y);
-    trd_H_hori1->DefineSection(0, -AperX[0], 0, 0, 1.0);
-    trd_H_hori1->DefineSection(1, AperX[0], 0, 0, 1.0);
-    TGeoVolume* trd_H_hori_vol1 = new TGeoVolume("trd_H_x_01", trd_H_hori1, aluminiumVolMed);
-    trd_H_hori_vol1->SetLineColor(kRed);
-    BarPosY = AperY[0];
-
-    TGeoCombiTrans* trd_H_hori_combi01 = new TGeoCombiTrans(0., (BarPosY + Hhei / 2.), PilPosZ[0], roty090);
-    trd_1->AddNode(trd_H_hori_vol1, 11, trd_H_hori_combi01);
-    TGeoCombiTrans* trd_H_hori_combi02 = new TGeoCombiTrans(0., -(BarPosY + Hhei / 2.), PilPosZ[0], roty090);
-    trd_1->AddNode(trd_H_hori_vol1, 12, trd_H_hori_combi02);
-    TGeoCombiTrans* trd_H_hori_combi03 = new TGeoCombiTrans(0., (BarPosY + Hhei / 2.), PilPosZ[1], roty090);
-    trd_1->AddNode(trd_H_hori_vol1, 13, trd_H_hori_combi03);
-    TGeoCombiTrans* trd_H_hori_combi04 = new TGeoCombiTrans(0., -(BarPosY + Hhei / 2.), PilPosZ[1], roty090);
-    trd_1->AddNode(trd_H_hori_vol1, 14, trd_H_hori_combi04);
-  }
-
-  // station 2
-  if (ShowLayer[4])  // if geometry contains layer 5 (1st layer of station 2)
-  {
-    TGeoXtru* trd_H_hori1 = new TGeoXtru(2);  // define Xtrusion of 2 planes
-    trd_H_hori1->DefinePolygon(12, x, y);
-    trd_H_hori1->DefineSection(0, -AperX[1], 0, 0, 1.0);
-    trd_H_hori1->DefineSection(1, AperX[1], 0, 0, 1.0);
-    TGeoVolume* trd_H_hori_vol1 = new TGeoVolume("trd_H_x_02", trd_H_hori1, aluminiumVolMed);
-    trd_H_hori_vol1->SetLineColor(kRed);
-    BarPosY = AperY[1];
-
-    TGeoCombiTrans* trd_H_hori_combi01 = new TGeoCombiTrans(0., (BarPosY + Hhei / 2.), PilPosZ[2], roty090);
-    trd_2->AddNode(trd_H_hori_vol1, 21, trd_H_hori_combi01);
-    TGeoCombiTrans* trd_H_hori_combi02 = new TGeoCombiTrans(0., -(BarPosY + Hhei / 2.), PilPosZ[2], roty090);
-    trd_2->AddNode(trd_H_hori_vol1, 22, trd_H_hori_combi02);
-    TGeoCombiTrans* trd_H_hori_combi03 = new TGeoCombiTrans(0., (BarPosY + Hhei / 2.), PilPosZ[3], roty090);
-    trd_2->AddNode(trd_H_hori_vol1, 23, trd_H_hori_combi03);
-    TGeoCombiTrans* trd_H_hori_combi04 = new TGeoCombiTrans(0., -(BarPosY + Hhei / 2.), PilPosZ[3], roty090);
-    trd_2->AddNode(trd_H_hori_vol1, 24, trd_H_hori_combi04);
-  }
-
-  // station 3
-  if (ShowLayer[8])  // if geometry contains layer 9 (1st layer of station 3)
-  {
-    TGeoXtru* trd_H_hori1 = new TGeoXtru(2);  // define Xtrusion of 2 planes
-    trd_H_hori1->DefinePolygon(12, x, y);
-    trd_H_hori1->DefineSection(0, -AperX[2], 0, 0, 1.0);
-    trd_H_hori1->DefineSection(1, AperX[2], 0, 0, 1.0);
-    TGeoVolume* trd_H_hori_vol1 = new TGeoVolume("trd_H_x_03", trd_H_hori1, aluminiumVolMed);
-    trd_H_hori_vol1->SetLineColor(kRed);
-    BarPosY = AperY[2];
-
-    TGeoCombiTrans* trd_H_hori_combi01 = new TGeoCombiTrans(0., (BarPosY + Hhei / 2.), PilPosZ[4], roty090);
-    trd_3->AddNode(trd_H_hori_vol1, 31, trd_H_hori_combi01);
-    TGeoCombiTrans* trd_H_hori_combi02 = new TGeoCombiTrans(0., -(BarPosY + Hhei / 2.), PilPosZ[4], roty090);
-    trd_3->AddNode(trd_H_hori_vol1, 32, trd_H_hori_combi02);
-    TGeoCombiTrans* trd_H_hori_combi03 = new TGeoCombiTrans(0., (BarPosY + Hhei / 2.), PilPosZ[5], roty090);
-    trd_3->AddNode(trd_H_hori_vol1, 33, trd_H_hori_combi03);
-    TGeoCombiTrans* trd_H_hori_combi04 = new TGeoCombiTrans(0., -(BarPosY + Hhei / 2.), PilPosZ[5], roty090);
-    trd_3->AddNode(trd_H_hori_vol1, 34, trd_H_hori_combi04);
-  }
-
-
-  //-------------------
-  // horizontal supports (Z)
-  //-------------------
-
-  // station 1
-  if (ShowLayer[0])  // if geometry contains layer 1 (1st layer of station 1)
-  {
-    TGeoXtru* trd_H_slope1 = new TGeoXtru(2);  // define Xtrusion of 2 planes
-    trd_H_slope1->DefinePolygon(12, x, y);
-    trd_H_slope1->DefineSection(0, -(PilPosZ[1] - PilPosZ[0] - Hwid) / 2., 0, 0, 1.0);
-    trd_H_slope1->DefineSection(1, +(PilPosZ[1] - PilPosZ[0] - Hwid) / 2., 0, 0, 1.0);
-    TGeoVolume* trd_H_slope_vol1 = new TGeoVolume("trd_H_z_01", trd_H_slope1, aluminiumVolMed);
-    trd_H_slope_vol1->SetLineColor(kGreen);
-    PilPosX = AperX[0];
-    BarPosY = AperY[0];
-
-    TGeoCombiTrans* trd_H_slope_combi01 =
-      new TGeoCombiTrans((PilPosX + Hhei / 2.), (BarPosY + Hhei - Hwid / 2.), (PilPosZ[0] + PilPosZ[1]) / 2., rotz090);
-    trd_1->AddNode(trd_H_slope_vol1, 11, trd_H_slope_combi01);
-    TGeoCombiTrans* trd_H_slope_combi02 =
-      new TGeoCombiTrans(-(PilPosX + Hhei / 2.), (BarPosY + Hhei - Hwid / 2.), (PilPosZ[0] + PilPosZ[1]) / 2., rotz090);
-    trd_1->AddNode(trd_H_slope_vol1, 12, trd_H_slope_combi02);
-    TGeoCombiTrans* trd_H_slope_combi03 =
-      new TGeoCombiTrans((PilPosX + Hhei / 2.), -(BarPosY + Hhei - Hwid / 2.), (PilPosZ[0] + PilPosZ[1]) / 2., rotz090);
-    trd_1->AddNode(trd_H_slope_vol1, 13, trd_H_slope_combi03);
-    TGeoCombiTrans* trd_H_slope_combi04 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), -(BarPosY + Hhei - Hwid / 2.),
-                                                             (PilPosZ[0] + PilPosZ[1]) / 2., rotz090);
-    trd_1->AddNode(trd_H_slope_vol1, 14, trd_H_slope_combi04);
-  }
-
-  // station 2
-  if (ShowLayer[4])  // if geometry contains layer 5 (1st layer of station 2)
-  {
-    TGeoXtru* trd_H_slope1 = new TGeoXtru(2);  // define Xtrusion of 2 planes
-    trd_H_slope1->DefinePolygon(12, x, y);
-    trd_H_slope1->DefineSection(0, -(PilPosZ[3] - PilPosZ[2] - Hwid) / 2., 0, 0, 1.0);
-    trd_H_slope1->DefineSection(1, +(PilPosZ[3] - PilPosZ[2] - Hwid) / 2., 0, 0, 1.0);
-    TGeoVolume* trd_H_slope_vol1 = new TGeoVolume("trd_H_z_02", trd_H_slope1, aluminiumVolMed);
-    trd_H_slope_vol1->SetLineColor(kGreen);
-    PilPosX = AperX[1];
-    BarPosY = AperY[1];
-
-    TGeoCombiTrans* trd_H_slope_combi01 =
-      new TGeoCombiTrans((PilPosX + Hhei / 2.), (BarPosY + Hhei - Hwid / 2.), (PilPosZ[2] + PilPosZ[3]) / 2., rotz090);
-    trd_2->AddNode(trd_H_slope_vol1, 21, trd_H_slope_combi01);
-    TGeoCombiTrans* trd_H_slope_combi02 =
-      new TGeoCombiTrans(-(PilPosX + Hhei / 2.), (BarPosY + Hhei - Hwid / 2.), (PilPosZ[2] + PilPosZ[3]) / 2., rotz090);
-    trd_2->AddNode(trd_H_slope_vol1, 22, trd_H_slope_combi02);
-    TGeoCombiTrans* trd_H_slope_combi03 =
-      new TGeoCombiTrans((PilPosX + Hhei / 2.), -(BarPosY + Hhei - Hwid / 2.), (PilPosZ[2] + PilPosZ[3]) / 2., rotz090);
-    trd_2->AddNode(trd_H_slope_vol1, 23, trd_H_slope_combi03);
-    TGeoCombiTrans* trd_H_slope_combi04 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), -(BarPosY + Hhei - Hwid / 2.),
-                                                             (PilPosZ[2] + PilPosZ[3]) / 2., rotz090);
-    trd_2->AddNode(trd_H_slope_vol1, 24, trd_H_slope_combi04);
-  }
-
-  // station 3
-  if (ShowLayer[8])  // if geometry contains layer 9 (1st layer of station 3)
-  {
-    TGeoXtru* trd_H_slope1 = new TGeoXtru(2);  // define Xtrusion of 2 planes
-    trd_H_slope1->DefinePolygon(12, x, y);
-    trd_H_slope1->DefineSection(0, -(PilPosZ[5] - PilPosZ[4] - Hwid) / 2., 0, 0, 1.0);
-    trd_H_slope1->DefineSection(1, +(PilPosZ[5] - PilPosZ[4] - Hwid) / 2., 0, 0, 1.0);
-    TGeoVolume* trd_H_slope_vol1 = new TGeoVolume("trd_H_z_03", trd_H_slope1, aluminiumVolMed);
-    trd_H_slope_vol1->SetLineColor(kGreen);
-    PilPosX = AperX[2];
-    BarPosY = AperY[2];
-
-    TGeoCombiTrans* trd_H_slope_combi01 =
-      new TGeoCombiTrans((PilPosX + Hhei / 2.), (BarPosY + Hhei - Hwid / 2.), (PilPosZ[4] + PilPosZ[5]) / 2., rotz090);
-    trd_3->AddNode(trd_H_slope_vol1, 31, trd_H_slope_combi01);
-    TGeoCombiTrans* trd_H_slope_combi02 =
-      new TGeoCombiTrans(-(PilPosX + Hhei / 2.), (BarPosY + Hhei - Hwid / 2.), (PilPosZ[4] + PilPosZ[5]) / 2., rotz090);
-    trd_3->AddNode(trd_H_slope_vol1, 32, trd_H_slope_combi02);
-    TGeoCombiTrans* trd_H_slope_combi03 =
-      new TGeoCombiTrans((PilPosX + Hhei / 2.), -(BarPosY + Hhei - Hwid / 2.), (PilPosZ[4] + PilPosZ[5]) / 2., rotz090);
-    trd_3->AddNode(trd_H_slope_vol1, 33, trd_H_slope_combi03);
-    TGeoCombiTrans* trd_H_slope_combi04 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), -(BarPosY + Hhei - Hwid / 2.),
-                                                             (PilPosZ[4] + PilPosZ[5]) / 2., rotz090);
-    trd_3->AddNode(trd_H_slope_vol1, 34, trd_H_slope_combi04);
-  }
-
-  if (IncludeLabels) {
-
-    Int_t text_height    = 40;
-    Int_t text_thickness = 8;
-
-    TGeoTranslation* tr200 =
-      new TGeoTranslation(0., (AperY[0] + Hhei + text_height / 2.), PilPosZ[0] - 15 + text_thickness / 2.);
-    TGeoTranslation* tr201 =
-      new TGeoTranslation(0., (AperY[1] + Hhei + text_height / 2.), PilPosZ[2] - 15 + text_thickness / 2.);
-    TGeoTranslation* tr202 =
-      new TGeoTranslation(0., (AperY[2] + Hhei + text_height / 2.), PilPosZ[4] - 15 + text_thickness / 2.);
-
-    TGeoCombiTrans* tr203 =
-      new TGeoCombiTrans(-(AperX[0] + Hhei + text_thickness / 2.), (AperY[0] + Hhei - Hwid - text_height / 2.),
-                         (PilPosZ[0] + PilPosZ[1]) / 2., roty090);
-    TGeoCombiTrans* tr204 =
-      new TGeoCombiTrans(-(AperX[1] + Hhei + text_thickness / 2.), (AperY[1] + Hhei - Hwid - text_height / 2.),
-                         (PilPosZ[2] + PilPosZ[3]) / 2., roty090);
-    TGeoCombiTrans* tr205 =
-      new TGeoCombiTrans(-(AperX[2] + Hhei + text_thickness / 2.), (AperY[2] + Hhei - Hwid - text_height / 2.),
-                         (PilPosZ[4] + PilPosZ[5]) / 2., roty090);
-
-    TGeoCombiTrans* tr206 =
-      new TGeoCombiTrans((AperX[0] + Hhei + text_thickness / 2.), (AperY[0] + Hhei - Hwid - text_height / 2.),
-                         (PilPosZ[0] + PilPosZ[1]) / 2., roty270);
-    TGeoCombiTrans* tr207 =
-      new TGeoCombiTrans((AperX[1] + Hhei + text_thickness / 2.), (AperY[1] + Hhei - Hwid - text_height / 2.),
-                         (PilPosZ[2] + PilPosZ[3]) / 2., roty270);
-    TGeoCombiTrans* tr208 =
-      new TGeoCombiTrans((AperX[2] + Hhei + text_thickness / 2.), (AperY[2] + Hhei - Hwid - text_height / 2.),
-                         (PilPosZ[4] + PilPosZ[5]) / 2., roty270);
-
-    TGeoVolume* trdbox1 = new TGeoVolumeAssembly("trdbox1");  // volume for TRD text (108, 40, 8)
-    TGeoVolume* trdbox2 = new TGeoVolumeAssembly("trdbox2");  // volume for TRD text (108, 40, 8)
-    TGeoVolume* trdbox3 = new TGeoVolumeAssembly("trdbox3");  // volume for TRD text (108, 40, 8)
-    add_trd_labels(trdbox1, trdbox2, trdbox3);
-
-    // final placement
-    if (ShowLayer[0])  // if geometry contains layer 1 (1st layer of station 1)
-    {
-      //    trd_1->AddNode(trdbox1, 1, tr200);
-      trd_1->AddNode(trdbox1, 4, tr203);
-      trd_1->AddNode(trdbox1, 7, tr206);
-    }
-    if (ShowLayer[4])  // if geometry contains layer 5 (1st layer of station 2)
-    {
-      //    trd_2->AddNode(trdbox2, 2, tr201);
-      trd_2->AddNode(trdbox2, 5, tr204);
-      trd_2->AddNode(trdbox2, 8, tr207);
-    }
-    if (ShowLayer[8])  // if geometry contains layer 9 (1st layer of station 3)
-    {
-      //    trd_3->AddNode(trdbox3, 3, tr202);
-      trd_3->AddNode(trdbox3, 6, tr205);
-      trd_3->AddNode(trdbox3, 9, tr208);
-    }
-  }
-
-  //  gGeoMan->GetVolume(geoVersion)->AddNode(trdsupport,1);
-
-  if (ShowLayer[0])  // if geometry contains layer 1 (1st layer of station 1)
-    gGeoMan->GetVolume(geoVersion)->AddNode(trd_1, 1);
-  if (ShowLayer[4])  // if geometry contains layer 5 (1st layer of station 2)
-    gGeoMan->GetVolume(geoVersion)->AddNode(trd_2, 2);
-  if (ShowLayer[8])  // if geometry contains layer 9 (1st layer of station 3)
-    gGeoMan->GetVolume(geoVersion)->AddNode(trd_3, 3);
-}
-
-
-void add_trd_labels(TGeoVolume* trdbox1, TGeoVolume* trdbox2, TGeoVolume* trdbox3)
-{
-  // write TRD (the 3 characters) in a simple geometry
-  TGeoMedium* textVolMed = gGeoMan->GetMedium(TextVolumeMedium);
-
-  Int_t Tcolor = kBlue;  // kRed;
-  Int_t Rcolor = kBlue;  // kRed;  // kRed;
-  Int_t Dcolor = kBlue;  // kRed;  // kYellow;
-  Int_t Icolor = kBlue;  // kRed;
-
-  // define transformations for letter pieces
-  // T
-  TGeoTranslation* tr01 = new TGeoTranslation(0., -4., 0.);
-  TGeoTranslation* tr02 = new TGeoTranslation(0., 16., 0.);
-
-  // R
-  TGeoTranslation* tr11 = new TGeoTranslation(10, 0., 0.);
-  TGeoTranslation* tr12 = new TGeoTranslation(2, 0., 0.);
-  TGeoTranslation* tr13 = new TGeoTranslation(2, 16., 0.);
-  TGeoTranslation* tr14 = new TGeoTranslation(-2, 8., 0.);
-  TGeoTranslation* tr15 = new TGeoTranslation(-6, 0., 0.);
-
-  // D
-  TGeoTranslation* tr21 = new TGeoTranslation(12., 0., 0.);
-  TGeoTranslation* tr22 = new TGeoTranslation(6., 16., 0.);
-  TGeoTranslation* tr23 = new TGeoTranslation(6., -16., 0.);
-  TGeoTranslation* tr24 = new TGeoTranslation(4., 0., 0.);
-
-  // I
-  TGeoTranslation* tr31 = new TGeoTranslation(0., 0., 0.);
-  TGeoTranslation* tr32 = new TGeoTranslation(0., 16., 0.);
-  TGeoTranslation* tr33 = new TGeoTranslation(0., -16., 0.);
-
-  // make letter T
-  //   TGeoVolume *T = geom->MakeBox("T", Vacuum, 25., 25., 5.);
-  //   T->SetVisibility(kFALSE);
-  TGeoVolume* T = new TGeoVolumeAssembly("Tbox");  // volume for T
-
-  TGeoBBox* Tbar1b  = new TGeoBBox("trd_Tbar1b", 4., 16., 4.);  // | vertical
-  TGeoVolume* Tbar1 = new TGeoVolume("Tbar1", Tbar1b, textVolMed);
-  Tbar1->SetLineColor(Tcolor);
-  T->AddNode(Tbar1, 1, tr01);
-  TGeoBBox* Tbar2b  = new TGeoBBox("trd_Tbar2b", 16, 4., 4.);  // - top
-  TGeoVolume* Tbar2 = new TGeoVolume("Tbar2", Tbar2b, textVolMed);
-  Tbar2->SetLineColor(Tcolor);
-  T->AddNode(Tbar2, 1, tr02);
-
-  // make letter R
-  //   TGeoVolume *R = geom->MakeBox("R", Vacuum, 25., 25., 5.);
-  //   R->SetVisibility(kFALSE);
-  TGeoVolume* R = new TGeoVolumeAssembly("Rbox");  // volume for R
-
-  TGeoBBox* Rbar1b  = new TGeoBBox("trd_Rbar1b", 4., 20, 4.);
-  TGeoVolume* Rbar1 = new TGeoVolume("Rbar1", Rbar1b, textVolMed);
-  Rbar1->SetLineColor(Rcolor);
-  R->AddNode(Rbar1, 1, tr11);
-  TGeoBBox* Rbar2b  = new TGeoBBox("trd_Rbar2b", 4., 4., 4.);
-  TGeoVolume* Rbar2 = new TGeoVolume("Rbar2", Rbar2b, textVolMed);
-  Rbar2->SetLineColor(Rcolor);
-  R->AddNode(Rbar2, 1, tr12);
-  R->AddNode(Rbar2, 2, tr13);
-  TGeoTubeSeg* Rtub1b = new TGeoTubeSeg("trd_Rtub1b", 4., 12, 4., 90., 270.);
-  TGeoVolume* Rtub1   = new TGeoVolume("Rtub1", (TGeoShape*) Rtub1b, textVolMed);
-  Rtub1->SetLineColor(Rcolor);
-  R->AddNode(Rtub1, 1, tr14);
-  TGeoArb8* Rbar3b  = new TGeoArb8("trd_Rbar3b", 4.);
-  TGeoVolume* Rbar3 = new TGeoVolume("Rbar3", Rbar3b, textVolMed);
-  Rbar3->SetLineColor(Rcolor);
-  TGeoArb8* arb = (TGeoArb8*) Rbar3->GetShape();
-  arb->SetVertex(0, 12., -4.);
-  arb->SetVertex(1, 0., -20.);
-  arb->SetVertex(2, -8., -20.);
-  arb->SetVertex(3, 4., -4.);
-  arb->SetVertex(4, 12., -4.);
-  arb->SetVertex(5, 0., -20.);
-  arb->SetVertex(6, -8., -20.);
-  arb->SetVertex(7, 4., -4.);
-  R->AddNode(Rbar3, 1, tr15);
-
-  // make letter D
-  //   TGeoVolume *D = geom->MakeBox("D", Vacuum, 25., 25., 5.);
-  //   D->SetVisibility(kFALSE);
-  TGeoVolume* D = new TGeoVolumeAssembly("Dbox");  // volume for D
-
-  TGeoBBox* Dbar1b  = new TGeoBBox("trd_Dbar1b", 4., 20, 4.);
-  TGeoVolume* Dbar1 = new TGeoVolume("Dbar1", Dbar1b, textVolMed);
-  Dbar1->SetLineColor(Dcolor);
-  D->AddNode(Dbar1, 1, tr21);
-  TGeoBBox* Dbar2b  = new TGeoBBox("trd_Dbar2b", 2., 4., 4.);
-  TGeoVolume* Dbar2 = new TGeoVolume("Dbar2", Dbar2b, textVolMed);
-  Dbar2->SetLineColor(Dcolor);
-  D->AddNode(Dbar2, 1, tr22);
-  D->AddNode(Dbar2, 2, tr23);
-  TGeoTubeSeg* Dtub1b = new TGeoTubeSeg("trd_Dtub1b", 12, 20, 4., 90., 270.);
-  TGeoVolume* Dtub1   = new TGeoVolume("Dtub1", (TGeoShape*) Dtub1b, textVolMed);
-  Dtub1->SetLineColor(Dcolor);
-  D->AddNode(Dtub1, 1, tr24);
-
-  // make letter I
-  TGeoVolume* I = new TGeoVolumeAssembly("Ibox");  // volume for I
-
-  TGeoBBox* Ibar1b  = new TGeoBBox("trd_Ibar1b", 4., 12., 4.);  // | vertical
-  TGeoVolume* Ibar1 = new TGeoVolume("Ibar1", Ibar1b, textVolMed);
-  Ibar1->SetLineColor(Icolor);
-  I->AddNode(Ibar1, 1, tr31);
-  TGeoBBox* Ibar2b  = new TGeoBBox("trd_Ibar2b", 10., 4., 4.);  // - top
-  TGeoVolume* Ibar2 = new TGeoVolume("Ibar2", Ibar2b, textVolMed);
-  Ibar2->SetLineColor(Icolor);
-  I->AddNode(Ibar2, 1, tr32);
-  I->AddNode(Ibar2, 2, tr33);
-
-
-  // build text block "TRD"  <32> + 8 + <28> + 8 + <32> = 108
-
-  //  TGeoBBox *trdboxb = new TGeoBBox("", 108./2, 40./2, 8./2);
-  //  TGeoVolume *trdbox = new TGeoVolume("trdboxb", trdboxb, textVolMed);
-  //  trdbox->SetVisibility(kFALSE);
-
-  //  TGeoVolume* trdbox[0] = new TGeoVolumeAssembly("trdbox1"); // volume for TRD text (108, 40, 8)
-  //  TGeoVolume* trdbox[1] = new TGeoVolumeAssembly("trdbox2"); // volume for TRD text (108, 40, 8)
-  //  TGeoVolume* trdbox[2] = new TGeoVolumeAssembly("trdbox3"); // volume for TRD text (108, 40, 8)
-
-  TGeoTranslation* tr100 = new TGeoTranslation(38., 0., 0.);
-  TGeoTranslation* tr101 = new TGeoTranslation(0., 0., 0.);
-  TGeoTranslation* tr102 = new TGeoTranslation(-38., 0., 0.);
-
-  //  TGeoTranslation *tr103 = new TGeoTranslation( -70., 0., 0.);  // on the same line
-  //  TGeoTranslation *tr104 = new TGeoTranslation( -86., 0., 0.);  // on the same line
-  //  TGeoTranslation *tr105 = new TGeoTranslation(-102., 0., 0.);  // on the same line
-
-  TGeoTranslation* tr110 = new TGeoTranslation(0., -50., 0.);
-  TGeoTranslation* tr111 = new TGeoTranslation(8., -50., 0.);
-  TGeoTranslation* tr112 = new TGeoTranslation(-8., -50., 0.);
-  TGeoTranslation* tr113 = new TGeoTranslation(16., -50., 0.);
-  TGeoTranslation* tr114 = new TGeoTranslation(-16., -50., 0.);
-
-  TGeoTranslation* tr200 = new TGeoTranslation(0., 0., 0.);
-  TGeoTranslation* tr201 = new TGeoTranslation(0., -50., 0.);
-  TGeoTranslation* tr202 = new TGeoTranslation(0., -100., 0.);
-
-  TGeoTranslation* tr210 = new TGeoTranslation(0., -150., 0.);
-  TGeoTranslation* tr213 = new TGeoTranslation(16., -150., 0.);
-  TGeoTranslation* tr214 = new TGeoTranslation(-16., -150., 0.);
-
-  // station 1
-  trdbox1->AddNode(T, 1, tr100);
-  trdbox1->AddNode(R, 1, tr101);
-  trdbox1->AddNode(D, 1, tr102);
-
-  trdbox1->AddNode(I, 1, tr110);
-
-  // station 2
-  trdbox2->AddNode(T, 1, tr100);
-  trdbox2->AddNode(R, 1, tr101);
-  trdbox2->AddNode(D, 1, tr102);
-
-  trdbox2->AddNode(I, 1, tr111);
-  trdbox2->AddNode(I, 2, tr112);
-
-  //// station 3
-  //  trdbox3->AddNode(T, 1, tr100);
-  //  trdbox3->AddNode(R, 1, tr101);
-  //  trdbox3->AddNode(D, 1, tr102);
-  //
-  //  trdbox3->AddNode(I, 1, tr110);
-  //  trdbox3->AddNode(I, 2, tr113);
-  //  trdbox3->AddNode(I, 3, tr114);
-
-  // station 3
-  trdbox3->AddNode(T, 1, tr200);
-  trdbox3->AddNode(R, 1, tr201);
-  trdbox3->AddNode(D, 1, tr202);
-
-  trdbox3->AddNode(I, 1, tr210);
-  trdbox3->AddNode(I, 2, tr213);
-  trdbox3->AddNode(I, 3, tr214);
-
-  //  TGeoScale *sc100 = new TGeoScale( 36./50., 36./50., 1.);  // text is vertical 50 cm, H-bar opening is 36 cm
-  //
-  //  // scale text
-  //  TGeoHMatrix *mat100 = new TGeoHMatrix("");
-  //  TGeoHMatrix *mat101 = new TGeoHMatrix("");
-  //  TGeoHMatrix *mat102 = new TGeoHMatrix("");
-  //  (*mat100) = (*tr100) * (*sc100);
-  //  (*mat101) = (*tr101) * (*sc100);
-  //  (*mat102) = (*tr102) * (*sc100);
-  //
-  //  trdbox->AddNode(T, 1, mat100);
-  //  trdbox->AddNode(R, 1, mat101);
-  //  trdbox->AddNode(D, 1, mat102);
-
-  //   // final placement
-  //   //   TGeoTranslation *tr103 = new TGeoTranslation(0., 400., 500.);
-  //   gGeoMan->GetVolume(geoVersion)->AddNode(trdbox, 1, new TGeoTranslation(0., 400., 500.));
-  //   gGeoMan->GetVolume(geoVersion)->AddNode(trdbox, 2, new TGeoTranslation(0., 500., 600.));
-  //   gGeoMan->GetVolume(geoVersion)->AddNode(trdbox, 3, new TGeoTranslation(0., 600., 700.));
-
-  //  return trdbox;
-}
-
-
-void create_box_supports()
-{
-  const TString trd_01 = "support_trd1";
-  TGeoVolume* trd_1    = new TGeoVolumeAssembly(trd_01);
-
-  const TString trd_02 = "support_trd2";
-  TGeoVolume* trd_2    = new TGeoVolumeAssembly(trd_02);
-
-  const TString trd_03 = "support_trd3";
-  TGeoVolume* trd_3    = new TGeoVolumeAssembly(trd_03);
-
-  //  const TString trdSupport = "supportframe";
-  //  TGeoVolume* trdsupport = new TGeoVolumeAssembly(trdSupport);
-  //
-  //  trdsupport->AddNode(trd_1, 1);
-  //  trdsupport->AddNode(trd_2, 2);
-  //  trdsupport->AddNode(trd_3, 3);
-
-  TGeoMedium* keepVolMed      = gGeoMan->GetMedium(KeepingVolumeMedium);
-  TGeoMedium* aluminiumVolMed = gGeoMan->GetMedium(AluminiumVolumeMedium);  // define Volume Medium
-
-  const Int_t I_height = 40;  // cm // I profile properties
-  const Int_t I_width  = 30;  // cm // I profile properties
-  const Int_t I_thick  = 2;   // cm // I profile properties
-
-  const Double_t BeamHeight     = 570;  // beamline is at 5.7m above the floor
-  const Double_t PlatformHeight = 234;  // platform is   2.34m above the floor
-  const Double_t PlatformOffset = 1;    // distance to platform
-
-  //  Double_t AperX[3] = { 450., 550., 600.};  // 100 cm modules  // inner aperture in X of support structure for stations 1,2,3
-  //  Double_t AperY[3] = { 350., 450., 500.};  // 100 cm modules  // inner aperture in Y of support structure for stations 1,2,3
-
-  const Double_t AperX[3] = {4.5 * DetectorSizeX[1], 5.5 * DetectorSizeX[1],
-                             6 * DetectorSizeX[1]};  // inner aperture in X of support structure for stations 1,2,3
-  const Double_t AperY[3] = {3.5 * DetectorSizeY[1], 4.5 * DetectorSizeY[1],
-                             5 * DetectorSizeY[1]};  // inner aperture in Y of support structure for stations 1,2,3
-  // platform
-  const Double_t AperYbot[3] = {BeamHeight - (PlatformHeight + PlatformOffset + I_height), 4.5 * DetectorSizeY[1],
-                                5 * DetectorSizeY[1]};  // inner aperture for station1
-
-  const Double_t xBarPosYtop[3] = {AperY[0] + I_height / 2., AperY[1] + I_height / 2., AperY[2] + I_height / 2.};
-  const Double_t xBarPosYbot[3] = {AperYbot[0] + I_height / 2., xBarPosYtop[1], xBarPosYtop[2]};
-
-  const Double_t zBarPosYtop[3] = {AperY[0] + I_height - I_width / 2., AperY[1] + I_height - I_width / 2.,
-                                   AperY[2] + I_height - I_width / 2.};
-  const Double_t zBarPosYbot[3] = {AperYbot[0] + I_height - I_width / 2., zBarPosYtop[1], zBarPosYtop[2]};
-
-  Double_t PilPosX;
-  Double_t PilPosZ[6];  // PilPosZ
-
-  PilPosZ[0] = LayerPosition[0] + I_width / 2.;
-  PilPosZ[1] = LayerPosition[3] - I_width / 2. + LayerThickness;
-  PilPosZ[2] = LayerPosition[4] + I_width / 2.;
-  PilPosZ[3] = LayerPosition[7] - I_width / 2. + LayerThickness;
-  PilPosZ[4] = LayerPosition[8] + I_width / 2.;
-  PilPosZ[5] = LayerPosition[9] - I_width / 2. + LayerThickness;
-
-  //  cout << "PilPosZ[0]: " << PilPosZ[0] << endl;
-  //  cout << "PilPosZ[1]: " << PilPosZ[1] << endl;
-
-  TGeoRotation* rotx090 = new TGeoRotation("rotx090");
-  rotx090->RotateX(90.);  // rotate  90 deg around x-axis
-  TGeoRotation* roty090 = new TGeoRotation("roty090");
-  roty090->RotateY(90.);  // rotate  90 deg around y-axis
-  TGeoRotation* rotz090 = new TGeoRotation("rotz090");
-  rotz090->RotateZ(90.);  // rotate  90 deg around y-axis
-  TGeoRotation* roty270 = new TGeoRotation("roty270");
-  roty270->RotateY(270.);  // rotate 270 deg around y-axis
-
-  TGeoRotation* rotzx01 = new TGeoRotation("rotzx01");
-  rotzx01->RotateZ(90.);  // rotate  90 deg around z-axis
-  rotzx01->RotateX(90.);  // rotate  90 deg around x-axis
-
-  TGeoRotation* rotzx02 = new TGeoRotation("rotzx02");
-  rotzx02->RotateZ(270.);  // rotate 270 deg around z-axis
-  rotzx02->RotateX(90.);   // rotate  90 deg around x-axis
-
-  Double_t ang1 = atan(3. / 4.) * 180. / acos(-1.);
-  //  cout << "DEDE " << ang1 << endl;
-  //  Double_t sin1 = acos(-1.);
-  //  cout << "DEDE " << sin1 << endl;
-  TGeoRotation* rotx080 = new TGeoRotation("rotx080");
-  rotx080->RotateX(90. - ang1);  // rotate  80 deg around x-axis
-  TGeoRotation* rotx100 = new TGeoRotation("rotx100");
-  rotx100->RotateX(90. + ang1);  // rotate 100 deg around x-axis
-
-  TGeoRotation* rotxy01 = new TGeoRotation("rotxy01");
-  rotxy01->RotateX(90.);    // rotate  90 deg around x-axis
-  rotxy01->RotateZ(-ang1);  // rotate  ang1   around rotated y-axis
-
-  TGeoRotation* rotxy02 = new TGeoRotation("rotxy02");
-  rotxy02->RotateX(90.);   // rotate  90 deg around x-axis
-  rotxy02->RotateZ(ang1);  // rotate  ang1   around rotated y-axis
-
-
-  //-------------------
-  // vertical pillars (Y)
-  //-------------------
-
-  // station 1
-  if (ShowLayer[0])  // if geometry contains layer 1 (1st layer of station 1)
-  {
-    //      TGeoBBox* trd_I_vert1_keep  = new TGeoBBox("", I_thick /2., I_height /2. - I_thick, (BeamHeight + (AperY[0]+I_height) ) /2.);
-    TGeoBBox* trd_I_vert1_keep = new TGeoBBox("trd_I_vert1_keep", I_thick / 2., I_height / 2. - I_thick,
-                                              ((AperYbot[0] + I_height) + (AperY[0] + I_height)) / 2.);
-    TGeoVolume* trd_I_vert1    = new TGeoVolume("trd_I_y11", trd_I_vert1_keep, aluminiumVolMed);
-    //      TGeoBBox* trd_I_vert2_keep  = new TGeoBBox("", I_width /2.,            I_thick /2., (BeamHeight + (AperY[0]+I_height) ) /2.);
-    TGeoBBox* trd_I_vert2_keep = new TGeoBBox("trd_I_vert2_keep", I_width / 2., I_thick / 2.,
-                                              ((AperYbot[0] + I_height) + (AperY[0] + I_height)) / 2.);
-    TGeoVolume* trd_I_vert2    = new TGeoVolume("trd_I_y12", trd_I_vert2_keep, aluminiumVolMed);
-
-    trd_I_vert1->SetLineColor(kGreen);  // kBlue);  // Yellow);  // kOrange);
-    trd_I_vert2->SetLineColor(kGreen);  // kBlue);  // Yellow);  // kOrange);
-
-    TGeoTranslation* ty01 = new TGeoTranslation("ty01", 0., 0., 0.);
-    TGeoTranslation* ty02 = new TGeoTranslation("ty02", 0., (I_height - I_thick) / 2., 0.);
-    TGeoTranslation* ty03 = new TGeoTranslation("ty03", 0., -(I_height - I_thick) / 2., 0.);
-
-    //      TGeoBBox* trd_I_vert_vol1_keep = new TGeoBBox("", I_width /2., I_height /2., (BeamHeight + (AperY[0]+I_height) ) /2.);
-    TGeoBBox* trd_I_vert_vol1_keep = new TGeoBBox("trd_I_vert_vol1_keep", I_width / 2., I_height / 2.,
-                                                  ((AperYbot[0] + I_height) + (AperY[0] + I_height)) / 2.);
-    TGeoVolume* trd_I_vert_vol1    = new TGeoVolume("trd_I_y10", trd_I_vert_vol1_keep, keepVolMed);
-
-    // set green color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2)
-    trd_I_vert_vol1->SetLineColor(kGreen);
-
-    // build I-bar trd_I_vert_vol1
-    trd_I_vert_vol1->AddNode(trd_I_vert1, 1, ty01);
-    trd_I_vert_vol1->AddNode(trd_I_vert2, 2, ty02);
-    trd_I_vert_vol1->AddNode(trd_I_vert2, 3, ty03);
-
-    // close gap to horizontal z-bars
-    TGeoBBox* trd_I_vert3_keep =
-      new TGeoBBox("trd_I_vert3_keep", (I_width - I_thick) / 2. / 2., I_height / 2. - I_thick, I_thick / 2.);
-    TGeoVolume* trd_I_vert3 = new TGeoVolume("trd_I_y13", trd_I_vert3_keep, aluminiumVolMed);
-    trd_I_vert3->SetLineColor(kGreen);
-    //      TGeoTranslation *ty04 = new TGeoTranslation("ty04",  (I_thick/2. + (I_width-I_thick)/2./2.), 0., -( (AperYbot[0]+I_height) + (AperY[0]+I_height) - I_width) /2.);  // top
-    //      TGeoTranslation *ty05 = new TGeoTranslation("ty05",  (I_thick/2. + (I_width-I_thick)/2./2.), 0.,  ( (AperYbot[0]+I_height) + (AperY[0]+I_height) - I_width) /2.);  // bottom
-    TGeoTranslation* ty04 = new TGeoTranslation("ty04", (I_thick / 2. + (I_width - I_thick) / 2. / 2.), 0.,
-                                                -(zBarPosYbot[0] + zBarPosYtop[0]) / 2.);  // top
-    TGeoTranslation* ty05 = new TGeoTranslation("ty05", (I_thick / 2. + (I_width - I_thick) / 2. / 2.), 0.,
-                                                (zBarPosYbot[0] + zBarPosYtop[0]) / 2.);  // bottom
-    trd_I_vert_vol1->AddNode(trd_I_vert3, 4, ty04);
-    trd_I_vert_vol1->AddNode(trd_I_vert3, 5, ty05);
-
-    PilPosX = AperX[0];
-
-    TGeoCombiTrans* trd_I_vert_combi01 = new TGeoCombiTrans(
-      (PilPosX + I_height / 2.), -((AperYbot[0] + I_height) - (AperY[0] + I_height)) / 2., PilPosZ[0], rotzx01);
-    trd_1->AddNode(trd_I_vert_vol1, 11, trd_I_vert_combi01);
-    TGeoCombiTrans* trd_I_vert_combi02 = new TGeoCombiTrans(
-      -(PilPosX + I_height / 2.), -((AperYbot[0] + I_height) - (AperY[0] + I_height)) / 2., PilPosZ[0], rotzx01);
-    trd_1->AddNode(trd_I_vert_vol1, 12, trd_I_vert_combi02);
-    TGeoCombiTrans* trd_I_vert_combi03 = new TGeoCombiTrans(
-      (PilPosX + I_height / 2.), -((AperYbot[0] + I_height) - (AperY[0] + I_height)) / 2., PilPosZ[1], rotzx02);
-    trd_1->AddNode(trd_I_vert_vol1, 13, trd_I_vert_combi03);
-    TGeoCombiTrans* trd_I_vert_combi04 = new TGeoCombiTrans(
-      -(PilPosX + I_height / 2.), -((AperYbot[0] + I_height) - (AperY[0] + I_height)) / 2., PilPosZ[1], rotzx02);
-    trd_1->AddNode(trd_I_vert_vol1, 14, trd_I_vert_combi04);
-  }
-
-  // station 2
-  if (ShowLayer[4])  // if geometry contains layer 5 (1st layer of station 2)
-  {
-    TGeoBBox* trd_I_vert1_keep = new TGeoBBox("trd_I_vert1_keep", I_thick / 2., I_height / 2. - I_thick,
-                                              (BeamHeight + (AperY[1] + I_height)) / 2.);
-    TGeoVolume* trd_I_vert1    = new TGeoVolume("trd_I_y21", trd_I_vert1_keep, aluminiumVolMed);
-    TGeoBBox* trd_I_vert2_keep =
-      new TGeoBBox("trd_I_vert2_keep", I_width / 2., I_thick / 2., (BeamHeight + (AperY[1] + I_height)) / 2.);
-    TGeoVolume* trd_I_vert2 = new TGeoVolume("trd_I_y22", trd_I_vert2_keep, aluminiumVolMed);
-
-    trd_I_vert1->SetLineColor(kGreen);
-    trd_I_vert2->SetLineColor(kGreen);
-
-    TGeoTranslation* ty01 = new TGeoTranslation("ty01", 0., 0., 0.);
-    TGeoTranslation* ty02 = new TGeoTranslation("ty02", 0., (I_height - I_thick) / 2., 0.);
-    TGeoTranslation* ty03 = new TGeoTranslation("ty03", 0., -(I_height - I_thick) / 2., 0.);
-
-    TGeoBBox* trd_I_vert_vol1_keep =
-      new TGeoBBox("trd_I_vert_vol1_keep", I_width / 2., I_height / 2., (BeamHeight + (AperY[1] + I_height)) / 2.);
-    TGeoVolume* trd_I_vert_vol1 = new TGeoVolume("trd_I_y20", trd_I_vert_vol1_keep, keepVolMed);
-
-    // set green color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2)
-    trd_I_vert_vol1->SetLineColor(kGreen);
-
-    // build I-bar trd_I_vert_vol1
-    trd_I_vert_vol1->AddNode(trd_I_vert1, 1, ty01);
-    trd_I_vert_vol1->AddNode(trd_I_vert2, 2, ty02);
-    trd_I_vert_vol1->AddNode(trd_I_vert2, 3, ty03);
-
-    // close gap to horizontal z-bars
-    TGeoBBox* trd_I_vert3_keep =
-      new TGeoBBox("trd_I_vert3_keep", (I_width - I_thick) / 2. / 2., I_height / 2. - I_thick, I_thick / 2.);
-    TGeoVolume* trd_I_vert3 = new TGeoVolume("trd_I_y23", trd_I_vert3_keep, aluminiumVolMed);
-    trd_I_vert3->SetLineColor(kGreen);
-    TGeoTranslation* ty04 = new TGeoTranslation("ty04", (I_thick / 2. + (I_width - I_thick) / 2. / 2.), 0.,
-                                                -(BeamHeight + (AperY[1] + I_height) - I_width) / 2.);  // top
-    TGeoTranslation* ty05 = new TGeoTranslation("ty05", (I_thick / 2. + (I_width - I_thick) / 2. / 2.), 0.,
-                                                -(BeamHeight - (AperY[1] + I_height)) / 2. + zBarPosYbot[1]);  // bottom
-    trd_I_vert_vol1->AddNode(trd_I_vert3, 4, ty04);
-    trd_I_vert_vol1->AddNode(trd_I_vert3, 5, ty05);
-
-    PilPosX = AperX[1];
-
-    TGeoCombiTrans* trd_I_vert_combi01 =
-      new TGeoCombiTrans((PilPosX + I_height / 2.), -(BeamHeight - (AperY[1] + I_height)) / 2., PilPosZ[2], rotzx01);
-    trd_2->AddNode(trd_I_vert_vol1, 21, trd_I_vert_combi01);
-    TGeoCombiTrans* trd_I_vert_combi02 =
-      new TGeoCombiTrans(-(PilPosX + I_height / 2.), -(BeamHeight - (AperY[1] + I_height)) / 2., PilPosZ[2], rotzx01);
-    trd_2->AddNode(trd_I_vert_vol1, 22, trd_I_vert_combi02);
-    TGeoCombiTrans* trd_I_vert_combi03 =
-      new TGeoCombiTrans((PilPosX + I_height / 2.), -(BeamHeight - (AperY[1] + I_height)) / 2., PilPosZ[3], rotzx02);
-    trd_2->AddNode(trd_I_vert_vol1, 23, trd_I_vert_combi03);
-    TGeoCombiTrans* trd_I_vert_combi04 =
-      new TGeoCombiTrans(-(PilPosX + I_height / 2.), -(BeamHeight - (AperY[1] + I_height)) / 2., PilPosZ[3], rotzx02);
-    trd_2->AddNode(trd_I_vert_vol1, 24, trd_I_vert_combi04);
-  }
-
-  // station 3
-  if (ShowLayer[8])  // if geometry contains layer 9 (1st layer of station 3)
-  {
-    TGeoBBox* trd_I_vert1_keep = new TGeoBBox("trd_I_vert1_keep", I_thick / 2., I_height / 2. - I_thick,
-                                              (BeamHeight + (AperY[2] + I_height)) / 2.);
-    TGeoVolume* trd_I_vert1    = new TGeoVolume("trd_I_y31", trd_I_vert1_keep, aluminiumVolMed);
-    TGeoBBox* trd_I_vert2_keep =
-      new TGeoBBox("trd_I_vert2_keep", I_width / 2., I_thick / 2., (BeamHeight + (AperY[2] + I_height)) / 2.);
-    TGeoVolume* trd_I_vert2 = new TGeoVolume("trd_I_y32", trd_I_vert2_keep, aluminiumVolMed);
-
-    trd_I_vert1->SetLineColor(kGreen);
-    trd_I_vert2->SetLineColor(kGreen);
-
-    TGeoTranslation* ty01 = new TGeoTranslation("ty01", 0., 0., 0.);
-    TGeoTranslation* ty02 = new TGeoTranslation("ty02", 0., (I_height - I_thick) / 2., 0.);
-    TGeoTranslation* ty03 = new TGeoTranslation("ty03", 0., -(I_height - I_thick) / 2., 0.);
-
-    TGeoBBox* trd_I_vert_vol1_keep =
-      new TGeoBBox("trd_I_vert_vol1_keep", I_width / 2., I_height / 2., (BeamHeight + (AperY[2] + I_height)) / 2.);
-    TGeoVolume* trd_I_vert_vol1 = new TGeoVolume("trd_I_y30", trd_I_vert_vol1_keep, keepVolMed);
-
-    // set green color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2)
-    trd_I_vert_vol1->SetLineColor(kGreen);
-
-    // build I-bar trd_I_vert_vol1
-    trd_I_vert_vol1->AddNode(trd_I_vert1, 1, ty01);
-    trd_I_vert_vol1->AddNode(trd_I_vert2, 2, ty02);
-    trd_I_vert_vol1->AddNode(trd_I_vert2, 3, ty03);
-
-    // close gap to horizontal z-bars
-    TGeoBBox* trd_I_vert3_keep =
-      new TGeoBBox("trd_I_vert3_keep", (I_width - I_thick) / 2. / 2., I_height / 2. - I_thick, I_thick / 2.);
-    TGeoVolume* trd_I_vert3 = new TGeoVolume("trd_I_y33", trd_I_vert3_keep, aluminiumVolMed);
-    trd_I_vert3->SetLineColor(kGreen);
-    TGeoTranslation* ty04 = new TGeoTranslation("ty04", (I_thick / 2. + (I_width - I_thick) / 2. / 2.), 0.,
-                                                -(BeamHeight + (AperY[2] + I_height) - I_width) / 2.);  // top
-    TGeoTranslation* ty05 = new TGeoTranslation("ty05", (I_thick / 2. + (I_width - I_thick) / 2. / 2.), 0.,
-                                                -(BeamHeight - (AperY[2] + I_height)) / 2. + zBarPosYbot[2]);  // bottom
-    trd_I_vert_vol1->AddNode(trd_I_vert3, 4, ty04);
-    trd_I_vert_vol1->AddNode(trd_I_vert3, 5, ty05);
-
-    PilPosX = AperX[2];
-
-    TGeoCombiTrans* trd_I_vert_combi01 =
-      new TGeoCombiTrans((PilPosX + I_height / 2.), -(BeamHeight - (AperY[2] + I_height)) / 2., PilPosZ[4], rotzx01);
-    trd_3->AddNode(trd_I_vert_vol1, 31, trd_I_vert_combi01);
-    TGeoCombiTrans* trd_I_vert_combi02 =
-      new TGeoCombiTrans(-(PilPosX + I_height / 2.), -(BeamHeight - (AperY[2] + I_height)) / 2., PilPosZ[4], rotzx01);
-    trd_3->AddNode(trd_I_vert_vol1, 32, trd_I_vert_combi02);
-    TGeoCombiTrans* trd_I_vert_combi03 =
-      new TGeoCombiTrans((PilPosX + I_height / 2.), -(BeamHeight - (AperY[2] + I_height)) / 2., PilPosZ[5], rotzx02);
-    trd_3->AddNode(trd_I_vert_vol1, 33, trd_I_vert_combi03);
-    TGeoCombiTrans* trd_I_vert_combi04 =
-      new TGeoCombiTrans(-(PilPosX + I_height / 2.), -(BeamHeight - (AperY[2] + I_height)) / 2., PilPosZ[5], rotzx02);
-    trd_3->AddNode(trd_I_vert_vol1, 34, trd_I_vert_combi04);
-  }
-
-
-  //-------------------
-  // horizontal supports (X)
-  //-------------------
-
-  // station 1
-  if (ShowLayer[0])  // if geometry contains layer 1 (1st layer of station 1)
-  {
-    TGeoBBox* trd_I_hori1_keep = new TGeoBBox("trd_I_hori1_keep", I_thick / 2., I_height / 2. - I_thick, AperX[0]);
-    TGeoVolume* trd_I_hori1    = new TGeoVolume("trd_I_x11", trd_I_hori1_keep, aluminiumVolMed);
-    TGeoBBox* trd_I_hori2_keep = new TGeoBBox("trd_I_hori2_keep", I_width / 2., I_thick / 2., AperX[0]);
-    TGeoVolume* trd_I_hori2    = new TGeoVolume("trd_I_x12", trd_I_hori2_keep, aluminiumVolMed);
-
-    trd_I_hori1->SetLineColor(kRed);  // Yellow);
-    trd_I_hori2->SetLineColor(kRed);  // Yellow);
-
-    TGeoTranslation* tx01 = new TGeoTranslation("tx01", 0., 0., 0.);
-    TGeoTranslation* tx02 = new TGeoTranslation("tx02", 0., (I_height - I_thick) / 2., 0.);
-    TGeoTranslation* tx03 = new TGeoTranslation("tx03", 0., -(I_height - I_thick) / 2., 0.);
-
-    TGeoBBox* trd_I_hori_vol1_keep = new TGeoBBox("trd_I_hori_vol1_keep", I_width / 2., I_height / 2., AperX[0]);
-    TGeoVolume* trd_I_hori_vol1    = new TGeoVolume("trd_I_x10", trd_I_hori_vol1_keep, keepVolMed);
-
-    // set red color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2)
-    trd_I_hori_vol1->SetLineColor(kRed);
-
-    // build I-bar trd_I_hori_vol1
-    trd_I_hori_vol1->AddNode(trd_I_hori1, 1, tx01);
-    trd_I_hori_vol1->AddNode(trd_I_hori2, 2, tx02);
-    trd_I_hori_vol1->AddNode(trd_I_hori2, 3, tx03);
-
-    TGeoCombiTrans* trd_I_hori_combi01 = new TGeoCombiTrans(0., xBarPosYtop[0], PilPosZ[0], roty090);
-    trd_1->AddNode(trd_I_hori_vol1, 11, trd_I_hori_combi01);
-    TGeoCombiTrans* trd_I_hori_combi02 = new TGeoCombiTrans(0., -xBarPosYbot[0], PilPosZ[0], roty090);
-    trd_1->AddNode(trd_I_hori_vol1, 12, trd_I_hori_combi02);
-    TGeoCombiTrans* trd_I_hori_combi03 = new TGeoCombiTrans(0., xBarPosYtop[0], PilPosZ[1], roty090);
-    trd_1->AddNode(trd_I_hori_vol1, 13, trd_I_hori_combi03);
-    TGeoCombiTrans* trd_I_hori_combi04 = new TGeoCombiTrans(0., -xBarPosYbot[0], PilPosZ[1], roty090);
-    trd_1->AddNode(trd_I_hori_vol1, 14, trd_I_hori_combi04);
-  }
-
-  // station 2
-  if (ShowLayer[4])  // if geometry contains layer 5 (1st layer of station 2)
-  {
-    TGeoBBox* trd_I_hori1_keep = new TGeoBBox("trd_I_hori1_keep", I_thick / 2., I_height / 2. - I_thick, AperX[1]);
-    TGeoVolume* trd_I_hori1    = new TGeoVolume("trd_I_x21", trd_I_hori1_keep, aluminiumVolMed);
-    TGeoBBox* trd_I_hori2_keep = new TGeoBBox("trd_I_hori2_keep", I_width / 2., I_thick / 2., AperX[1]);
-    TGeoVolume* trd_I_hori2    = new TGeoVolume("trd_I_x22", trd_I_hori2_keep, aluminiumVolMed);
-
-    trd_I_hori1->SetLineColor(kRed);
-    trd_I_hori2->SetLineColor(kRed);
-
-    TGeoTranslation* tx01 = new TGeoTranslation("tx01", 0., 0., 0.);
-    TGeoTranslation* tx02 = new TGeoTranslation("tx02", 0., (I_height - I_thick) / 2., 0.);
-    TGeoTranslation* tx03 = new TGeoTranslation("tx03", 0., -(I_height - I_thick) / 2., 0.);
-
-    TGeoBBox* trd_I_hori_vol1_keep = new TGeoBBox("trd_I_hori_vol1_keep", I_width / 2., I_height / 2., AperX[1]);
-    TGeoVolume* trd_I_hori_vol1    = new TGeoVolume("trd_I_x20", trd_I_hori_vol1_keep, keepVolMed);
-
-    // set red color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2)
-    trd_I_hori_vol1->SetLineColor(kRed);
-
-    // build I-bar trd_I_hori_vol1
-    trd_I_hori_vol1->AddNode(trd_I_hori1, 1, tx01);
-    trd_I_hori_vol1->AddNode(trd_I_hori2, 2, tx02);
-    trd_I_hori_vol1->AddNode(trd_I_hori2, 3, tx03);
-
-    TGeoCombiTrans* trd_I_hori_combi01 = new TGeoCombiTrans(0., xBarPosYtop[1], PilPosZ[2], roty090);
-    trd_2->AddNode(trd_I_hori_vol1, 21, trd_I_hori_combi01);
-    TGeoCombiTrans* trd_I_hori_combi02 = new TGeoCombiTrans(0., -xBarPosYbot[1], PilPosZ[2], roty090);
-    trd_2->AddNode(trd_I_hori_vol1, 22, trd_I_hori_combi02);
-    TGeoCombiTrans* trd_I_hori_combi03 = new TGeoCombiTrans(0., xBarPosYtop[1], PilPosZ[3], roty090);
-    trd_2->AddNode(trd_I_hori_vol1, 23, trd_I_hori_combi03);
-    TGeoCombiTrans* trd_I_hori_combi04 = new TGeoCombiTrans(0., -xBarPosYbot[1], PilPosZ[3], roty090);
-    trd_2->AddNode(trd_I_hori_vol1, 24, trd_I_hori_combi04);
-  }
-
-  // station 3
-  if (ShowLayer[8])  // if geometry contains layer 9 (1st layer of station 3)
-  {
-    TGeoBBox* trd_I_hori1_keep = new TGeoBBox("trd_I_hori1_keep", I_thick / 2., I_height / 2. - I_thick, AperX[2]);
-    TGeoVolume* trd_I_hori1    = new TGeoVolume("trd_I_x31", trd_I_hori1_keep, aluminiumVolMed);
-    TGeoBBox* trd_I_hori2_keep = new TGeoBBox("trd_I_hori2_keep", I_width / 2., I_thick / 2., AperX[2]);
-    TGeoVolume* trd_I_hori2    = new TGeoVolume("trd_I_x32", trd_I_hori2_keep, aluminiumVolMed);
-
-    trd_I_hori1->SetLineColor(kRed);
-    trd_I_hori2->SetLineColor(kRed);
-
-    TGeoTranslation* tx01 = new TGeoTranslation("tx01", 0., 0., 0.);
-    TGeoTranslation* tx02 = new TGeoTranslation("tx02", 0., (I_height - I_thick) / 2., 0.);
-    TGeoTranslation* tx03 = new TGeoTranslation("tx03", 0., -(I_height - I_thick) / 2., 0.);
-
-    TGeoBBox* trd_I_hori_vol1_keep = new TGeoBBox("trd_I_hori_vol1_keep", I_width / 2., I_height / 2., AperX[2]);
-    TGeoVolume* trd_I_hori_vol1    = new TGeoVolume("trd_I_x30", trd_I_hori_vol1_keep, keepVolMed);
-
-    // set red color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2)
-    trd_I_hori_vol1->SetLineColor(kRed);
-
-    // build I-bar trd_I_hori_vol1
-    trd_I_hori_vol1->AddNode(trd_I_hori1, 1, tx01);
-    trd_I_hori_vol1->AddNode(trd_I_hori2, 2, tx02);
-    trd_I_hori_vol1->AddNode(trd_I_hori2, 3, tx03);
-
-    TGeoCombiTrans* trd_I_hori_combi01 = new TGeoCombiTrans(0., xBarPosYtop[2], PilPosZ[4], roty090);
-    trd_3->AddNode(trd_I_hori_vol1, 31, trd_I_hori_combi01);
-    TGeoCombiTrans* trd_I_hori_combi02 = new TGeoCombiTrans(0., -xBarPosYbot[2], PilPosZ[4], roty090);
-    trd_3->AddNode(trd_I_hori_vol1, 32, trd_I_hori_combi02);
-    TGeoCombiTrans* trd_I_hori_combi03 = new TGeoCombiTrans(0., xBarPosYtop[2], PilPosZ[5], roty090);
-    trd_3->AddNode(trd_I_hori_vol1, 33, trd_I_hori_combi03);
-    TGeoCombiTrans* trd_I_hori_combi04 = new TGeoCombiTrans(0., -xBarPosYbot[2], PilPosZ[5], roty090);
-    trd_3->AddNode(trd_I_hori_vol1, 34, trd_I_hori_combi04);
-  }
-
-
-  //-------------------
-  // horizontal supports (Z)
-  //-------------------
-
-  // station 1
-  if (ShowLayer[0])  // if geometry contains layer 1 (1st layer of station 1)
-  {
-    TGeoBBox* trd_I_slope1_keep = new TGeoBBox("trd_I_slope1_keep", I_thick / 2., I_height / 2. - I_thick,
-                                               (PilPosZ[1] - PilPosZ[0] - I_width) / 2.);
-    TGeoVolume* trd_I_slope1    = new TGeoVolume("trd_I_z11", trd_I_slope1_keep, aluminiumVolMed);
-    TGeoBBox* trd_I_slope2_keep =
-      new TGeoBBox("trd_I_slope2_keep", I_width / 2., I_thick / 2., (PilPosZ[1] - PilPosZ[0] - I_width) / 2.);
-    TGeoVolume* trd_I_slope2 = new TGeoVolume("trd_I_z12", trd_I_slope2_keep, aluminiumVolMed);
-
-    trd_I_slope1->SetLineColor(kYellow);
-    trd_I_slope2->SetLineColor(kYellow);
-
-    TGeoTranslation* tz01 = new TGeoTranslation("tz01", 0., 0., 0.);
-    TGeoTranslation* tz02 = new TGeoTranslation("tz02", 0., (I_height - I_thick) / 2., 0.);
-    TGeoTranslation* tz03 = new TGeoTranslation("tz03", 0., -(I_height - I_thick) / 2., 0.);
-
-    TGeoBBox* trd_I_slope_vol1_keep =
-      new TGeoBBox("trd_I_slope_vol1_keep", I_width / 2., I_height / 2., (PilPosZ[1] - PilPosZ[0] - I_width) / 2.);
-    TGeoVolume* trd_I_slope_vol1 = new TGeoVolume("trd_I_z10", trd_I_slope_vol1_keep, keepVolMed);
-
-    // set yellow color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2)
-    trd_I_slope_vol1->SetLineColor(kYellow);
-
-    // build I-bar trd_I_slope_vol1
-    trd_I_slope_vol1->AddNode(trd_I_slope1, 1, tz01);
-    trd_I_slope_vol1->AddNode(trd_I_slope2, 2, tz02);
-    trd_I_slope_vol1->AddNode(trd_I_slope2, 3, tz03);
-
-    PilPosX = AperX[0];
-
-    TGeoCombiTrans* trd_I_slope_combi01 =
-      new TGeoCombiTrans((PilPosX + I_height / 2.), zBarPosYtop[0], (PilPosZ[0] + PilPosZ[1]) / 2., rotz090);
-    trd_1->AddNode(trd_I_slope_vol1, 11, trd_I_slope_combi01);
-    TGeoCombiTrans* trd_I_slope_combi02 =
-      new TGeoCombiTrans(-(PilPosX + I_height / 2.), zBarPosYtop[0], (PilPosZ[0] + PilPosZ[1]) / 2., rotz090);
-    trd_1->AddNode(trd_I_slope_vol1, 12, trd_I_slope_combi02);
-    TGeoCombiTrans* trd_I_slope_combi03 =
-      new TGeoCombiTrans((PilPosX + I_height / 2.), -zBarPosYbot[0], (PilPosZ[0] + PilPosZ[1]) / 2., rotz090);
-    trd_1->AddNode(trd_I_slope_vol1, 13, trd_I_slope_combi03);
-    TGeoCombiTrans* trd_I_slope_combi04 =
-      new TGeoCombiTrans(-(PilPosX + I_height / 2.), -zBarPosYbot[0], (PilPosZ[0] + PilPosZ[1]) / 2., rotz090);
-    trd_1->AddNode(trd_I_slope_vol1, 14, trd_I_slope_combi04);
-  }
-
-  // station 2
-  if (ShowLayer[4])  // if geometry contains layer 5 (1st layer of station 2)
-  {
-    TGeoBBox* trd_I_slope1_keep = new TGeoBBox("trd_I_slope1_keep", I_thick / 2., I_height / 2. - I_thick,
-                                               (PilPosZ[3] - PilPosZ[2] - I_width) / 2.);
-    TGeoVolume* trd_I_slope1    = new TGeoVolume("trd_I_z21", trd_I_slope1_keep, aluminiumVolMed);
-    TGeoBBox* trd_I_slope2_keep =
-      new TGeoBBox("trd_I_slope2_keep", I_width / 2., I_thick / 2., (PilPosZ[3] - PilPosZ[2] - I_width) / 2.);
-    TGeoVolume* trd_I_slope2 = new TGeoVolume("trd_I_z22", trd_I_slope2_keep, aluminiumVolMed);
-
-    trd_I_slope1->SetLineColor(kYellow);
-    trd_I_slope2->SetLineColor(kYellow);
-
-    TGeoTranslation* tz01 = new TGeoTranslation("tz01", 0., 0., 0.);
-    TGeoTranslation* tz02 = new TGeoTranslation("tz02", 0., (I_height - I_thick) / 2., 0.);
-    TGeoTranslation* tz03 = new TGeoTranslation("tz03", 0., -(I_height - I_thick) / 2., 0.);
-
-    TGeoBBox* trd_I_slope_vol1_keep =
-      new TGeoBBox("trd_I_slope_vol1_keep", I_width / 2., I_height / 2., (PilPosZ[3] - PilPosZ[2] - I_width) / 2.);
-    TGeoVolume* trd_I_slope_vol1 = new TGeoVolume("trd_I_z20", trd_I_slope_vol1_keep, keepVolMed);
-
-    // set yellow color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2)
-    trd_I_slope_vol1->SetLineColor(kYellow);
-
-    // build I-bar trd_I_slope_vol1
-    trd_I_slope_vol1->AddNode(trd_I_slope1, 1, tz01);
-    trd_I_slope_vol1->AddNode(trd_I_slope2, 2, tz02);
-    trd_I_slope_vol1->AddNode(trd_I_slope2, 3, tz03);
-
-    PilPosX = AperX[1];
-
-    TGeoCombiTrans* trd_I_slope_combi01 =
-      new TGeoCombiTrans((PilPosX + I_height / 2.), zBarPosYtop[1], (PilPosZ[2] + PilPosZ[3]) / 2., rotz090);
-    trd_2->AddNode(trd_I_slope_vol1, 21, trd_I_slope_combi01);
-    TGeoCombiTrans* trd_I_slope_combi02 =
-      new TGeoCombiTrans(-(PilPosX + I_height / 2.), zBarPosYtop[1], (PilPosZ[2] + PilPosZ[3]) / 2., rotz090);
-    trd_2->AddNode(trd_I_slope_vol1, 22, trd_I_slope_combi02);
-    TGeoCombiTrans* trd_I_slope_combi03 =
-      new TGeoCombiTrans((PilPosX + I_height / 2.), -zBarPosYbot[1], (PilPosZ[2] + PilPosZ[3]) / 2., rotz090);
-    trd_2->AddNode(trd_I_slope_vol1, 23, trd_I_slope_combi03);
-    TGeoCombiTrans* trd_I_slope_combi04 =
-      new TGeoCombiTrans(-(PilPosX + I_height / 2.), -zBarPosYbot[1], (PilPosZ[2] + PilPosZ[3]) / 2., rotz090);
-    trd_2->AddNode(trd_I_slope_vol1, 24, trd_I_slope_combi04);
-  }
-
-  // station 3
-  if (ShowLayer[8])  // if geometry contains layer 9 (1st layer of station 3)
-  {
-    TGeoBBox* trd_I_slope1_keep = new TGeoBBox("trd_I_slope1_keep", I_thick / 2., I_height / 2. - I_thick,
-                                               (PilPosZ[5] - PilPosZ[4] - I_width) / 2.);
-    TGeoVolume* trd_I_slope1    = new TGeoVolume("trd_I_z31", trd_I_slope1_keep, aluminiumVolMed);
-    TGeoBBox* trd_I_slope2_keep =
-      new TGeoBBox("trd_I_slope2_keep", I_width / 2., I_thick / 2., (PilPosZ[5] - PilPosZ[4] - I_width) / 2.);
-    TGeoVolume* trd_I_slope2 = new TGeoVolume("trd_I_z32", trd_I_slope2_keep, aluminiumVolMed);
-
-    trd_I_slope1->SetLineColor(kYellow);
-    trd_I_slope2->SetLineColor(kYellow);
-
-    TGeoTranslation* tz01 = new TGeoTranslation("tz01", 0., 0., 0.);
-    TGeoTranslation* tz02 = new TGeoTranslation("tz02", 0., (I_height - I_thick) / 2., 0.);
-    TGeoTranslation* tz03 = new TGeoTranslation("tz03", 0., -(I_height - I_thick) / 2., 0.);
-
-    TGeoBBox* trd_I_slope_vol1_keep =
-      new TGeoBBox("trd_I_slope_vol1_keep", I_width / 2., I_height / 2., (PilPosZ[5] - PilPosZ[4] - I_width) / 2.);
-    TGeoVolume* trd_I_slope_vol1 = new TGeoVolume("trd_I_z30", trd_I_slope_vol1_keep, keepVolMed);
-
-    // set yellow color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2)
-    trd_I_slope_vol1->SetLineColor(kYellow);
-
-    // build I-bar trd_I_slope_vol1
-    trd_I_slope_vol1->AddNode(trd_I_slope1, 1, tz01);
-    trd_I_slope_vol1->AddNode(trd_I_slope2, 2, tz02);
-    trd_I_slope_vol1->AddNode(trd_I_slope2, 3, tz03);
-
-    PilPosX = AperX[2];
-
-    TGeoCombiTrans* trd_I_slope_combi01 =
-      new TGeoCombiTrans((PilPosX + I_height / 2.), zBarPosYtop[2], (PilPosZ[4] + PilPosZ[5]) / 2., rotz090);
-    trd_3->AddNode(trd_I_slope_vol1, 31, trd_I_slope_combi01);
-    TGeoCombiTrans* trd_I_slope_combi02 =
-      new TGeoCombiTrans(-(PilPosX + I_height / 2.), zBarPosYtop[2], (PilPosZ[4] + PilPosZ[5]) / 2., rotz090);
-    trd_3->AddNode(trd_I_slope_vol1, 32, trd_I_slope_combi02);
-    TGeoCombiTrans* trd_I_slope_combi03 =
-      new TGeoCombiTrans((PilPosX + I_height / 2.), -zBarPosYbot[2], (PilPosZ[4] + PilPosZ[5]) / 2., rotz090);
-    trd_3->AddNode(trd_I_slope_vol1, 33, trd_I_slope_combi03);
-    TGeoCombiTrans* trd_I_slope_combi04 =
-      new TGeoCombiTrans(-(PilPosX + I_height / 2.), -zBarPosYbot[2], (PilPosZ[4] + PilPosZ[5]) / 2., rotz090);
-    trd_3->AddNode(trd_I_slope_vol1, 34, trd_I_slope_combi04);
-  }
-
-  if (IncludeLabels) {
-
-    Int_t text_height    = 40;
-    Int_t text_thickness = 8;
-
-    TGeoTranslation* tr200 = new TGeoTranslation(0., (AperY[0] + I_height + text_height / 2.),
-                                                 PilPosZ[0] - I_width / 2. + text_thickness / 2.);
-    TGeoTranslation* tr201 = new TGeoTranslation(0., (AperY[1] + I_height + text_height / 2.),
-                                                 PilPosZ[2] - I_width / 2. + text_thickness / 2.);
-    TGeoTranslation* tr202 = new TGeoTranslation(0., (AperY[2] + I_height + text_height / 2.),
-                                                 PilPosZ[4] - I_width / 2. + text_thickness / 2.);
-
-    TGeoCombiTrans* tr203 =
-      new TGeoCombiTrans(-(AperX[0] + I_height + text_thickness / 2.),
-                         (AperY[0] + I_height - I_width - text_height / 2.), (PilPosZ[0] + PilPosZ[1]) / 2., roty090);
-    TGeoCombiTrans* tr204 =
-      new TGeoCombiTrans(-(AperX[1] + I_height + text_thickness / 2.),
-                         (AperY[1] + I_height - I_width - text_height / 2.), (PilPosZ[2] + PilPosZ[3]) / 2., roty090);
-    TGeoCombiTrans* tr205 =
-      new TGeoCombiTrans(-(AperX[2] + I_height + text_thickness / 2.),
-                         (AperY[2] + I_height - I_width - text_height / 2.), (PilPosZ[4] + PilPosZ[5]) / 2., roty090);
-
-    TGeoCombiTrans* tr206 =
-      new TGeoCombiTrans((AperX[0] + I_height + text_thickness / 2.),
-                         (AperY[0] + I_height - I_width - text_height / 2.), (PilPosZ[0] + PilPosZ[1]) / 2., roty270);
-    TGeoCombiTrans* tr207 =
-      new TGeoCombiTrans((AperX[1] + I_height + text_thickness / 2.),
-                         (AperY[1] + I_height - I_width - text_height / 2.), (PilPosZ[2] + PilPosZ[3]) / 2., roty270);
-    TGeoCombiTrans* tr208 =
-      new TGeoCombiTrans((AperX[2] + I_height + text_thickness / 2.),
-                         (AperY[2] + I_height - I_width - text_height / 2.), (PilPosZ[4] + PilPosZ[5]) / 2., roty270);
-
-    TGeoVolume* trdbox1 = new TGeoVolumeAssembly("trdbox1");  // volume for TRD text (108, 40, 8)
-    TGeoVolume* trdbox2 = new TGeoVolumeAssembly("trdbox2");  // volume for TRD text (108, 40, 8)
-    TGeoVolume* trdbox3 = new TGeoVolumeAssembly("trdbox3");  // volume for TRD text (108, 40, 8)
-    add_trd_labels(trdbox1, trdbox2, trdbox3);
-
-    // final placement
-    if (ShowLayer[0])  // if geometry contains layer 1 (1st layer of station 1)
-    {
-      //    trd_1->AddNode(trdbox1, 1, tr200);
-      trd_1->AddNode(trdbox1, 4, tr203);
-      trd_1->AddNode(trdbox1, 7, tr206);
-    }
-    if (ShowLayer[4])  // if geometry contains layer 5 (1st layer of station 2)
-    {
-      //    trd_2->AddNode(trdbox2, 2, tr201);
-      trd_2->AddNode(trdbox2, 5, tr204);
-      trd_2->AddNode(trdbox2, 8, tr207);
-    }
-    if (ShowLayer[8])  // if geometry contains layer 9 (1st layer of station 3)
-    {
-      //    trd_3->AddNode(trdbox3, 3, tr202);
-      trd_3->AddNode(trdbox3, 6, tr205);
-      trd_3->AddNode(trdbox3, 9, tr208);
-    }
-  }
-
-  if (ShowLayer[0])  // if geometry contains layer 1 (1st layer of station 1)
-    gGeoMan->GetVolume(geoVersion)->AddNode(trd_1, 1);
-  if (ShowLayer[4])  // if geometry contains layer 5 (1st layer of station 2)
-    gGeoMan->GetVolume(geoVersion)->AddNode(trd_2, 2);
-  if (ShowLayer[8])  // if geometry contains layer 9 (1st layer of station 3)
-    gGeoMan->GetVolume(geoVersion)->AddNode(trd_3, 3);
-}
diff --git a/macro/mcbm/mcbm_transport.C b/macro/mcbm/mcbm_transport.C
index 1ef9222627b0ebcb83ee96899dfcf259ac12098e..f972266b96293bbf66a89b608fd3abb390152a11 100644
--- a/macro/mcbm/mcbm_transport.C
+++ b/macro/mcbm/mcbm_transport.C
@@ -24,7 +24,6 @@ void mcbm_transport(Int_t nEvents = 10,
                     //                  const char* setupName = "mcbm_beam_2022_03",
                     //                  const char* setupName = "mcbm_beam_2022_02",
                     const char* setupName = "mcbm_beam_2021_07_surveyed",
-                    //                  const char* setupName = "mcbm_beam_2021_07",
                     //                  const char* setupName = "mcbm_beam_2021_04",
                     //                  const char* setupName = "mcbm_beam_2021_03",
                     //                  const char* setupName = "mcbm_beam_2020_03",