From 5d871213d2289bd72ddd81743933312dcc0366ce Mon Sep 17 00:00:00 2001 From: David Emschermann <d.emschermann@gsi.de> Date: Tue, 17 Aug 2021 19:39:58 +0000 Subject: [PATCH] Add TRD v21c by Alexandru, TOF v21c by Norbert and update mcbm_transport.C, refs #2215 --- .../tof/Create_TOF_Geometry_v21c_mcbm.C | 1277 +++++ .../geometry/trd/Create_TRD_Geometry_v21a.C | 4521 +++++++++++++++++ macro/mcbm/mcbm_transport.C | 6 +- 3 files changed, 5803 insertions(+), 1 deletion(-) create mode 100644 macro/mcbm/geometry/tof/Create_TOF_Geometry_v21c_mcbm.C create mode 100644 macro/mcbm/geometry/trd/Create_TRD_Geometry_v21a.C diff --git a/macro/mcbm/geometry/tof/Create_TOF_Geometry_v21c_mcbm.C b/macro/mcbm/geometry/tof/Create_TOF_Geometry_v21c_mcbm.C new file mode 100644 index 0000000000..e2cd02fd17 --- /dev/null +++ b/macro/mcbm/geometry/tof/Create_TOF_Geometry_v21c_mcbm.C @@ -0,0 +1,1277 @@ +/// +/// \file Create_TOF_Geometry_v21a_mcbm.C +/// \brief Generates TOF geometry in Root format. +/// + +// Changelog +// +// 2021-06-21 - v21c - NH - double stack with 031 910 BUC 041 +// 2021-05-24 - v21b - NH - add M6 module +// 2020-04-14 - v20b - NH - swapped double stack layer 2 with STAR2 moodule, buc kept as dummy +// 2020-04-01 - v20a - NH - move mTOF +20 cm in x direction for the Mar 2020 run +// 2019-11-28 - v19b - DE - move mTOF +12 cm in x direction for the Nov 2019 run +// 2019-07-31 - v19a - DE - this TOF March 2019 geometry is also known as v18m +// 2017-11-03 - v18i - DE - shift mTOF to z=298 cm for acceptance matching with mSTS +// 2017-10-06 - v18h - DE - put v18f into vertical position to fit into the mCBM cave +// 2017-07-15 - v18g - DE - swap the z-position of TOF modules: 2 in the front, 3 in the back +// 2017-07-14 - v18f - DE - reduce vertical gap between TOF modules to fix the gap between modules 1-2 and 4-5 +// 2017-05-17 - v18e - DE - rotate electronics away from beam, shift 16 cm away from beam along x-axis +// 2017-05-17 - v18d - DE - change geometry name to v18d + +// in root all sizes are given in cm + +#include "TFile.h" +#include "TGeoCompositeShape.h" +#include "TGeoManager.h" +#include "TGeoMaterial.h" +#include "TGeoMatrix.h" +#include "TGeoMedium.h" +#include "TGeoPgon.h" +#include "TGeoVolume.h" +#include "TList.h" +#include "TMath.h" +#include "TROOT.h" +#include "TString.h" +#include "TSystem.h" + +#include <iostream> + +// Name of geometry version and output file +const TString geoVersion = "tof_v21c_mcbm"; // do not change +const TString geoVersionStand = geoVersion + "Stand"; +// +const TString fileTag = "tof_v21c"; +const TString FileNameSim = fileTag + "_mcbm.geo.root"; +const TString FileNameGeo = fileTag + "_mcbm_geo.root"; +const TString FileNameInfo = fileTag + "_mcbm.geo.info"; + +// TOF_Z_Front corresponds to front cover of outer super module towers +const Float_t TOF_Z_Front_Stand = 247.; // = z=298 mCBM@SIS18 +const Float_t TOF_X_Front_Stand = 0.; // = z=298 mCBM@SIS18 +const Float_t TOF_Z_Front = 0.; // = z=298 mCBM@SIS18 +//const Float_t TOF_Z_Front = 130; // = z=225 mCBM@SIS18 +//const Float_t TOF_Z_Front = 250; // SIS 100 hadron +//const Float_t TOF_Z_Front = 450; // SIS 100 hadron +//const Float_t TOF_Z_Front = 600; // SIS 100 electron +//const Float_t TOF_Z_Front = 650; // SIS 100 muon +//const Float_t TOF_Z_Front = 880; // SIS 300 electron +//const Float_t TOF_Z_Front = 1020; // SIS 300 muon +// +//const Float_t TOF_Z_Front = 951.5; // Wall_Z_Position = 1050 cm + + +// Names of the different used materials which are used to build the modules +// The materials are defined in the global media.geo file +const TString KeepingVolumeMedium = "air"; +const TString BoxVolumeMedium = "aluminium"; +const TString NoActivGasMedium = "RPCgas_noact"; +const TString ActivGasMedium = "RPCgas"; +const TString GlasMedium = "RPCglass"; +const TString ElectronicsMedium = "carbon"; + +// Counters: +// 0 MRPC3a +// 1 MRPC3b +// 2 USTC +// 3 +// 4 Diamond +// +// 6 Buc 2019 +// 7 CERN 20gap +// 8 Ceramic Pad +const Int_t NumberOfDifferentCounterTypes = 9; +const Float_t Glass_X[NumberOfDifferentCounterTypes] = {32., 32., 32., 32., 0.2, 32., 28.8, 20., 2.4}; +const Float_t Glass_Y[NumberOfDifferentCounterTypes] = {27.0, 53., 26.8, 10., 0.2, 10., 6., 20., 2.4}; +const Float_t Glass_Z[NumberOfDifferentCounterTypes] = {0.1, 0.1, 0.1, 0.1, 0.01, 0.1, 0.1, 0.1, 0.1}; + +const Float_t GasGap_X[NumberOfDifferentCounterTypes] = {32., 32., 32., 32., 0.2, 32., 28.8, 20., 2.4}; +const Float_t GasGap_Y[NumberOfDifferentCounterTypes] = {27.0, 53., 26.8, 10., 0.2, 10., 6., 20., 2.4}; +const Float_t GasGap_Z[NumberOfDifferentCounterTypes] = {0.025, 0.025, 0.025, 0.025, 0.01, 0.02, 0.02, 0.02, 0.025}; + +const Int_t NumberOfGaps[NumberOfDifferentCounterTypes] = {8, 8, 8, 8, 1, 8, 10, 20, 4}; +//const Int_t NumberOfGaps[NumberOfDifferentCounterTypes] = {1,1,1,1}; //deb +const Int_t NumberOfReadoutStrips[NumberOfDifferentCounterTypes] = {32, 32, 32, 32, 8, 32, 32, 20, 1}; +//const Int_t NumberOfReadoutStrips[NumberOfDifferentCounterTypes] = {1,1,1,1}; //deb + +const Float_t SingleStackStartPosition_Z[NumberOfDifferentCounterTypes] = {-0.6, -0.6, -0.6, -0.6, -0.1, + -0.6, -0.6, -0.6, -1.}; + +const Float_t Electronics_X[NumberOfDifferentCounterTypes] = {32.0, 32.0, 32.0, 32., 0.3, 0.1, 28.8, 20., 0.1}; +const Float_t Electronics_Y[NumberOfDifferentCounterTypes] = {5.0, 5.0, 1.0, 1., 0.1, 0.1, 1.0, 1.0, 0.1}; +const Float_t Electronics_Z[NumberOfDifferentCounterTypes] = {0.3, 0.3, 0.3, 0.3, 0.1, 0.1, 0.1, 0.1, 0.1}; + +const Int_t NofModuleTypes = 10; +// 0 M4 (TSHU) +// 1 M4 (USTC) +// 2 M6 (USTC) +// 5 Diamond +// 6 Buc +// 7 CERN 20 gap +// 8 Ceramic +// 9 Star2 +// Aluminum box for all module types +const Float_t Module_Size_X[NofModuleTypes] = {180., 180., 180., 180., 180., 5., 40., 30., 22.5, 100.}; +const Float_t Module_Size_Y[NofModuleTypes] = {49., 49., 74., 28., 18., 5., 12., 30., 11., 49.}; +const Float_t Module_Over_Y[NofModuleTypes] = {11.5, 11.5, 11., 4.5, 4.5, 0., 0., 0., 0., 0.}; +const Float_t Module_Size_Z[NofModuleTypes] = {11., 11., 13., 11., 11., 1., 12., 6., 6.2, 11.2}; +const Float_t Module_Thick_Alu_X_left = 0.1; +const Float_t Module_Thick_Alu_X_right = 1.0; +const Float_t Module_Thick_Alu_Y = 0.1; +const Float_t Module_Thick_Alu_Z = 0.1; + +// Distance to the center of the TOF wall [cm]; +const Float_t Wall_Z_Position = 400.; +const Float_t MeanTheta = 0.; + +//Type of Counter for module +const Int_t CounterTypeInModule[NofModuleTypes] = {0, 0, 1, 2, 3, 4, 6, 7, 8, 2}; +const Int_t NCounterInModule[NofModuleTypes] = {5, 5, 5, 5, 5, 1, 2, 1, 8, 2}; + +// Placement of the counter inside the module +const Float_t CounterXStartPosition[NofModuleTypes] = {-60.1, -66.0, -66.0, -60.0, -60.0, 0.0, 0., 0., -7., 0.}; +const Float_t CounterXDistance[NofModuleTypes] = {29.3, 32.0, 29.3, 30.0, 30.0, 0.0, 0., 0., 2., 0.}; +const Float_t CounterYStartPosition[NofModuleTypes] = {0.0, 0.0, 0.0, 0.0, 0.0, 0., 0., -4., -1.3, 0.}; +const Float_t CounterYDistance[NofModuleTypes] = {0.0, 0.0, 0.0, 0.0, 0.0, 0., 0., 8., 0., 0.}; +const Float_t CounterZDistance[NofModuleTypes] = {-2.5, 0.0, 0.0, 2.5, 2.5, 0., 6., 0., 0.1, 4.}; +const Float_t CounterZStartPosition[NofModuleTypes] = {0.0, 0.0, 0.0, 0.0, 0.0, 0., -3., 0., 0.0, -2.}; +const Float_t CounterRotationAngle[NofModuleTypes] = {0., 8.7, 7.0, 0., 0., 0., 0., 0., 0., 0.}; + +// Pole (support structure) +const Int_t MaxNumberOfPoles = 20; +Float_t Pole_ZPos[MaxNumberOfPoles]; +Float_t Pole_Col[MaxNumberOfPoles]; +Int_t NumberOfPoles = 0; + +const Float_t Pole_Size_X = 20.; +const Float_t Pole_Size_Y = 300.; +const Float_t Pole_Size_Z = 10.; +const Float_t Pole_Thick_X = 5.; +const Float_t Pole_Thick_Y = 5.; +const Float_t Pole_Thick_Z = 5.; + +// Bars (support structure) +const Float_t Bar_Size_X = 20.; +const Float_t Bar_Size_Y = 20.; +Float_t Bar_Size_Z = 100.; + +const Int_t MaxNumberOfBars = 20; +Float_t Bar_ZPos[MaxNumberOfBars]; +Float_t Bar_XPos[MaxNumberOfBars]; +Int_t NumberOfBars = 0; + +const Float_t ChamberOverlap = 40; +const Float_t DxColl = 158.0; //Module_Size_X-ChamberOverlap; +//const Float_t Pole_Offset=Module_Size_X/2.+Pole_Size_X/2.; +const Float_t Pole_Offset = 90.0 + Pole_Size_X / 2.; + +// Position for module placement +const Float_t Inner_Module_First_Y_Position = 16.; +const Float_t Inner_Module_Last_Y_Position = 480.; +const Float_t Inner_Module_X_Offset = 0.; // centered position in x/y +//const Float_t Inner_Module_X_Offset=18; // shift by 16 cm in x +const Int_t Inner_Module_NTypes = 3; +const Float_t Inner_Module_Types[Inner_Module_NTypes] = {4., 3., 0.}; +//const Float_t Inner_Module_Number[Inner_Module_NTypes] = {2.,2.,6.}; //V13_3a +const Float_t Inner_Module_Number[Inner_Module_NTypes] = {2., 2., 1.}; //V13_3a +//const Float_t Inner_Module_Number[Inner_Module_NTypes] = {0.,0.,0.}; //debugging + +const Float_t InnerSide_Module_X_Offset = 51.; +const Float_t InnerSide_Module_NTypes = 1; +const Float_t InnerSide_Module_Types[Inner_Module_NTypes] = {5.}; +const Float_t InnerSide_Module_Number[Inner_Module_NTypes] = {2.}; //v13_3a +//const Float_t InnerSide_Module_Number[Inner_Module_NTypes] = {0.}; //debug + +const Float_t Outer_Module_First_Y_Position = 0.; +const Float_t Outer_Module_Last_Y_Position = 480.; +const Float_t Outer_Module_X_Offset = 3.; +const Int_t Outer_Module_Col = 4; +const Int_t Outer_Module_NTypes = 2; +const Float_t Outer_Module_Types[Outer_Module_NTypes][Outer_Module_Col] = {1., 1., 1., 1., 2., 2., 2., 2.}; +const Float_t Outer_Module_Number[Outer_Module_NTypes][Outer_Module_Col] = {9., 9., 2., 0., 0., 0., 3., 4.}; //V13_3a +//const Float_t Outer_Module_Number[Outer_Module_NTypes][Outer_Module_Col] = {1.,1.,0.,0., 0.,0.,0.,0.};//debug + +const Float_t Star2_First_Z_Position = TOF_Z_Front + 15.7; +const Float_t Star2_Delta_Z_Position = 200; //16.3; +const Float_t Star2_First_Y_Position = 31.35; // +const Float_t Star2_Delta_Y_Position = 0.; // +const Int_t Star2_NTypes = 2; +const Float_t Star2_rotate_Z[Star2_NTypes] = {-90., -90.}; +const Float_t Star2_Types[Star2_NTypes] = {9., 9.}; +const Float_t Star2_Number[Star2_NTypes] = {1., 1.}; //debugging, V16b +const Float_t Star2_X_Offset[Star2_NTypes] = {0., 0.}; //{51.}; + +const Float_t Buc_First_Z_Position = TOF_Z_Front + 33.; +const Float_t Buc_Delta_Z_Position = 0.; +const Float_t Buc_First_Y_Position = 32.; // -29.5; // +const Float_t Buc_Delta_Y_Position = 0.; // +const Float_t Buc_rotate_Z = 180.; +const Int_t Buc_NTypes = 1; +const Float_t Buc_Types[Buc_NTypes] = {6.}; +const Float_t Buc_Number[Buc_NTypes] = {1.}; //debugging, V16b +const Float_t Buc_X_Offset[Buc_NTypes] = {0.5}; + +const Int_t Cer_NTypes = 3; +const Float_t Cer_Z_Position[Cer_NTypes] = {(float) (TOF_Z_Front + 13.2), (float) (TOF_Z_Front + 45.), + (float) (TOF_Z_Front + 45.)}; +const Float_t Cer_X_Position[Cer_NTypes] = {0., 49.8, 49.8}; +const Float_t Cer_Y_Position[Cer_NTypes] = {-1., 5., 5.}; +const Float_t Cer_rotate_Z[Cer_NTypes] = {0., 0., 0.}; +const Float_t Cer_Types[Cer_NTypes] = {5., 8., 8.}; +const Float_t Cer_Number[Cer_NTypes] = {1., 1., 1.}; //V16b + +const Float_t CERN_Z_Position = TOF_Z_Front + 50; // 20 gap +const Float_t CERN_First_Y_Position = 36.; +const Float_t CERN_X_Offset = 46.; //65.5; +const Float_t CERN_rotate_Z = 90.; +const Int_t CERN_NTypes = 1; +const Float_t CERN_Types[CERN_NTypes] = {7.}; // this is the SmType! +const Float_t CERN_Number[CERN_NTypes] = {1.}; // evtl. double for split signals + +// some global variables +TGeoManager* gGeoMan = NULL; // Pointer to TGeoManager instance +TGeoVolume* gModules[NofModuleTypes]; // Global storage for module types +TGeoVolume* gCounter[NumberOfDifferentCounterTypes]; +TGeoVolume* gPole; +TGeoVolume* gBar[MaxNumberOfBars]; + +const Float_t Dia_Z_Position = -0.2 - TOF_Z_Front_Stand; +const Float_t Dia_First_Y_Position = 0.; +const Float_t Dia_X_Offset = 0.; +const Float_t Dia_rotate_Z = 0.; +const Int_t Dia_NTypes = 1; +const Float_t Dia_Types[Dia_NTypes] = {5.}; +const Float_t Dia_Number[Dia_NTypes] = {1.}; + +Float_t Last_Size_Y = 0.; +Float_t Last_Over_Y = 0.; + +// Forward declarations +void create_materials_from_media_file(); +TGeoVolume* create_counter(Int_t); +TGeoVolume* create_new_counter(Int_t); +TGeoVolume* create_tof_module(Int_t); +TGeoVolume* create_new_tof_module(Int_t); +TGeoVolume* create_tof_pole(); +TGeoVolume* create_tof_bar(); +void position_tof_poles(Int_t); +void position_tof_bars(Int_t); +void position_inner_tof_modules(Int_t); +void position_side_tof_modules(Int_t); +void position_outer_tof_modules(Int_t); +void position_Dia(Int_t); +void position_Star2(Int_t); +void position_Buc(Int_t); +void position_cer_modules(Int_t); +void position_CERN(Int_t); +void dump_info_file(); + +void Create_TOF_Geometry_v21c_mcbm() +{ + + // Load needed material definition from media.geo file + create_materials_from_media_file(); + + // Get the GeoManager for later usage + gGeoMan = (TGeoManager*) gROOT->FindObject("FAIRGeom"); + gGeoMan->SetVisLevel(5); // 2 = super modules + gGeoMan->SetVisOption(0); + + // Create the top volume + /* + TGeoBBox* topbox= new TGeoBBox("", 1000., 1000., 1000.); + TGeoVolume* top = new TGeoVolume("top", topbox, gGeoMan->GetMedium("air")); + gGeoMan->SetTopVolume(top); + */ + + TGeoVolume* top = new TGeoVolumeAssembly("TOP"); + gGeoMan->SetTopVolume(top); + + TGeoRotation* tof_rotation = new TGeoRotation(); + tof_rotation->RotateY(0.); // angle with respect to beam axis + //tof_rotation->RotateZ( 0 ); // electronics on 9 o'clock position = +x + // tof_rotation->RotateZ( 0 ); // electronics on 9 o'clock position = +x + // tof_rotation->RotateZ( 90 ); // electronics on 12 o'clock position (top) + // tof_rotation->RotateZ( 180 ); // electronics on 3 o'clock position = -x + // tof_rotation->RotateZ( 270 ); // electronics on 6 o'clock position (bottom) + + TGeoVolume* tof = new TGeoVolumeAssembly(geoVersion); + // top->AddNode(tof, 1, tof_rotation); + top->AddNode(tof, 1); + + TGeoVolume* tofstand = new TGeoVolumeAssembly(geoVersionStand); + // Mar 2020 run + TGeoTranslation* stand_trans_local = new TGeoTranslation("", TOF_X_Front_Stand, 0., 0.); + TGeoTranslation* stand_trans = new TGeoTranslation("", 0., 0., TOF_Z_Front_Stand); + TGeoCombiTrans* stand_combi_trans = new TGeoCombiTrans(*stand_trans, *tof_rotation); + + // Nov 2019 run + // TGeoTranslation* stand_trans = new TGeoTranslation("", 12., 0., TOF_Z_Front_Stand); + // TGeoTranslation* stand_trans = new TGeoTranslation("", 0., 0., TOF_Z_Front_Stand); + TGeoRotation* stand_rot = new TGeoRotation(); + stand_rot->RotateY(0.); + //stand_rot->RotateY(1.0); + TGeoCombiTrans* stand_combi_trans_local = new TGeoCombiTrans(*stand_trans_local, *stand_rot); + + //tof->AddNode(tofstand, 1, stand_combi_trans); + tof->AddNode(tofstand, 1, stand_combi_trans_local); + //tof->AddNode(tofstand, 1); + + for (Int_t counterType = 0; counterType < NumberOfDifferentCounterTypes; counterType++) { + gCounter[counterType] = create_new_counter(counterType); + } + + for (Int_t moduleType = 0; moduleType < NofModuleTypes; moduleType++) { + gModules[moduleType] = create_new_tof_module(moduleType); + gModules[moduleType]->SetVisContainers(1); + } + + // no pole + // gPole = create_tof_pole(); + + // position_side_tof_modules(1); // keep order !! + // position_inner_tof_modules(2); + position_inner_tof_modules(3); + position_Dia(1); + position_Star2(2); + // position_cer_modules(3); + // position_CERN(1); + position_Buc(1); + + cout << "Outer Types " << Outer_Module_Types[0][0] << ", " << Outer_Module_Types[1][0] + << ", col=1: " << Outer_Module_Types[0][1] << ", " << Outer_Module_Types[1][1] << endl; + cout << "Outer Number " << Outer_Module_Number[0][0] << ", " << Outer_Module_Number[1][0] + << ", col=1: " << Outer_Module_Number[0][1] << ", " << Outer_Module_Number[1][1] << endl; + // position_outer_tof_modules(4); + // position_tof_poles(0); + // position_tof_bars(0); + + gGeoMan->CloseGeometry(); + gGeoMan->CheckOverlaps(0.001); + gGeoMan->PrintOverlaps(); + gGeoMan->CheckOverlaps(0.001, "s"); + gGeoMan->PrintOverlaps(); + gGeoMan->Test(); + + tof->Export(FileNameSim); + TFile* geoFile = new TFile(FileNameSim, "UPDATE"); + stand_combi_trans->Write(); + geoFile->Close(); + + /* + TFile* outfile1 = new TFile(FileNameSim,"RECREATE"); + top->Write(); + //gGeoMan->Write(); + outfile1->Close(); +*/ + //tof->RemoveNode((TGeoNode*)tofstand); + //top->AddNode(tof, 1, tof_rotation); + //tof->ReplaceNode((TGeoNode*)tofstand, 0, stand_combi_trans); + /* + CbmTransport run; + run.SetGeoFileName(FileNameGeo); + run.LoadSetup("setup_mcbm_tof_2020"); + run.SetField(new CbmFieldConst()); +*/ + //top->Export(FileNameGeo); + + TFile* outfile2 = new TFile(FileNameGeo, "RECREATE"); + gGeoMan->Write(); + outfile2->Close(); + + dump_info_file(); + + top->SetVisContainers(1); + gGeoMan->SetVisLevel(5); + top->Draw("ogl"); + //top->Draw(); + //gModules[0]->Draw("ogl"); + // gModules[0]->Draw(""); + gModules[0]->SetVisContainers(1); + // gModules[1]->Draw(""); + gModules[1]->SetVisContainers(1); + //gModules[5]->Draw(""); + // top->Raytrace(); +} + +void create_materials_from_media_file() +{ + // Use the FairRoot geometry interface to load the media which are already defined + FairGeoLoader* geoLoad = new FairGeoLoader("TGeo", "FairGeoLoader"); + FairGeoInterface* geoFace = geoLoad->getGeoInterface(); + TString geoPath = gSystem->Getenv("VMCWORKDIR"); + TString geoFile = geoPath + "/geometry/media.geo"; + geoFace->setMediaFile(geoFile); + geoFace->readMedia(); + + // Read the required media and create them in the GeoManager + FairGeoMedia* geoMedia = geoFace->getMedia(); + FairGeoBuilder* geoBuild = geoLoad->getGeoBuilder(); + + FairGeoMedium* air = geoMedia->getMedium("air"); + FairGeoMedium* aluminium = geoMedia->getMedium("aluminium"); + FairGeoMedium* RPCgas = geoMedia->getMedium("RPCgas"); + FairGeoMedium* RPCgas_noact = geoMedia->getMedium("RPCgas_noact"); + FairGeoMedium* RPCglass = geoMedia->getMedium("RPCglass"); + FairGeoMedium* carbon = geoMedia->getMedium("carbon"); + + // include check if all media are found + + geoBuild->createMedium(air); + geoBuild->createMedium(aluminium); + geoBuild->createMedium(RPCgas); + geoBuild->createMedium(RPCgas_noact); + geoBuild->createMedium(RPCglass); + geoBuild->createMedium(carbon); +} + +TGeoVolume* create_counter(Int_t modType) +{ + + //glass + Float_t gdx = Glass_X[modType]; + Float_t gdy = Glass_Y[modType]; + Float_t gdz = Glass_Z[modType]; + + //gas gap + Int_t nstrips = NumberOfReadoutStrips[modType]; + Int_t ngaps = NumberOfGaps[modType]; + + + Float_t ggdx = GasGap_X[modType]; + Float_t ggdy = GasGap_Y[modType]; + Float_t ggdz = GasGap_Z[modType]; + Float_t gsdx = ggdx / float(nstrips); + + //single stack + Float_t dzpos = gdz + ggdz; + Float_t startzpos = SingleStackStartPosition_Z[modType]; + + // electronics + //pcb dimensions + Float_t dxe = Electronics_X[modType]; + Float_t dye = Electronics_Y[modType]; + Float_t dze = Electronics_Z[modType]; + Float_t yele = (gdy + 0.1) / 2. + dye / 2.; + + // needed materials + TGeoMedium* glassPlateVolMed = gGeoMan->GetMedium(GlasMedium); + TGeoMedium* noActiveGasVolMed = gGeoMan->GetMedium(NoActivGasMedium); + TGeoMedium* activeGasVolMed = gGeoMan->GetMedium(ActivGasMedium); + TGeoMedium* electronicsVolMed = gGeoMan->GetMedium(ElectronicsMedium); + + // Single glass plate + TGeoBBox* glass_plate = new TGeoBBox("", gdx / 2., gdy / 2., gdz / 2.); + TGeoVolume* glass_plate_vol = new TGeoVolume("tof_glass", glass_plate, glassPlateVolMed); + glass_plate_vol->SetLineColor(kMagenta); // set line color for the glass plate + glass_plate_vol->SetTransparency(20); // set transparency for the TOF + TGeoTranslation* glass_plate_trans = new TGeoTranslation("", 0., 0., 0.); + + // Single gas gap + TGeoBBox* gas_gap = new TGeoBBox("", ggdx / 2., ggdy / 2., ggdz / 2.); + //TGeoVolume* gas_gap_vol = + //new TGeoVolume("tof_gas_gap", gas_gap, noActiveGasVolMed); + TGeoVolume* gas_gap_vol = new TGeoVolume("tof_gas_active", gas_gap, activeGasVolMed); + gas_gap_vol->Divide("Strip", 1, nstrips, -ggdx / 2., 0); + + gas_gap_vol->SetLineColor(kRed); // set line color for the gas gap + gas_gap_vol->SetTransparency(70); // set transparency for the TOF + TGeoTranslation* gas_gap_trans = new TGeoTranslation("", 0., 0., (gdz + ggdz) / 2.); + + + // Single subdivided active gas gap + /* + TGeoBBox* gas_active = new TGeoBBox("", gsdx/2., ggdy/2., ggdz/2.); + TGeoVolume* gas_active_vol = + new TGeoVolume("tof_gas_active", gas_active, activeGasVolMed); + gas_active_vol->SetLineColor(kBlack); // set line color for the gas gap + gas_active_vol->SetTransparency(70); // set transparency for the TOF + */ + + // Add glass plate, inactive gas gap and active gas gaps to a single stack + TGeoVolume* single_stack = new TGeoVolumeAssembly("single_stack"); + single_stack->AddNode(glass_plate_vol, 0, glass_plate_trans); + single_stack->AddNode(gas_gap_vol, 0, gas_gap_trans); + + /* + for (Int_t l=0; l<nstrips; l++){ + TGeoTranslation* gas_active_trans + = new TGeoTranslation("", -ggdx/2+(l+0.5)*gsdx, 0., 0.); + gas_gap_vol->AddNode(gas_active_vol, l, gas_active_trans); + // single_stack->AddNode(gas_active_vol, l, gas_active_trans); + } + */ + + // Add 8 single stacks + one glass plate at the e09.750nd to a multi stack + TGeoVolume* multi_stack = new TGeoVolumeAssembly("multi_stack"); + Int_t l; + for (l = 0; l < ngaps; l++) { + TGeoTranslation* single_stack_trans = new TGeoTranslation("", 0., 0., startzpos + l * dzpos); + multi_stack->AddNode(single_stack, l, single_stack_trans); + } + TGeoTranslation* single_glass_back_trans = new TGeoTranslation("", 0., 0., startzpos + ngaps * dzpos); + multi_stack->AddNode(glass_plate_vol, l, single_glass_back_trans); + + // Add electronics above and below the glass stack to build a complete counter + TGeoVolume* counter = new TGeoVolumeAssembly("counter"); + TGeoTranslation* multi_stack_trans = new TGeoTranslation("", 0., 0., 0.); + counter->AddNode(multi_stack, l, multi_stack_trans); + + TGeoBBox* pcb = new TGeoBBox("", dxe / 2., dye / 2., dze / 2.); + TGeoVolume* pcb_vol = new TGeoVolume("pcb", pcb, electronicsVolMed); + pcb_vol->SetLineColor(kCyan); // set line color for the gas gap + pcb_vol->SetTransparency(10); // set transparency for the TOF + for (Int_t l = 0; l < 2; l++) { + yele *= -1.; + TGeoTranslation* pcb_trans = new TGeoTranslation("", 0., yele, 0.); + counter->AddNode(pcb_vol, l, pcb_trans); + } + + return counter; +} + +TGeoVolume* create_new_counter(Int_t modType) +{ + + //glass + Float_t gdx = Glass_X[modType]; + Float_t gdy = Glass_Y[modType]; + Float_t gdz = Glass_Z[modType]; + + //gas gap + Int_t nstrips = NumberOfReadoutStrips[modType]; + Int_t ngaps = NumberOfGaps[modType]; + + + Float_t ggdx = GasGap_X[modType]; + Float_t ggdy = GasGap_Y[modType]; + Float_t ggdz = GasGap_Z[modType]; + Float_t gsdx = ggdx / (Float_t)(nstrips); + + // electronics + //pcb dimensions + Float_t dxe = Electronics_X[modType]; + Float_t dye = Electronics_Y[modType]; + Float_t dze = Electronics_Z[modType]; + Float_t yele = gdy / 2. + dye / 2.; + + // counter size (calculate from glas, gap and electronics sizes) + Float_t cdx = TMath::Max(gdx, ggdx); + cdx = TMath::Max(cdx, dxe) + 0.2; + Float_t cdy = TMath::Max(gdy, ggdy) + 2 * dye + 0.2; + Float_t cdz = ngaps * ggdz + (ngaps + 1) * gdz + 0.2; // ngaps * (gdz+ggdz) + gdz + 0.2; // ok + + //calculate thickness and first position in counter of single stack + Float_t dzpos = gdz + ggdz; + Float_t startzposglas = -ngaps * (gdz + ggdz) / 2.; // -cdz/2.+0.1+gdz/2.; // ok // (-cdz+gdz)/2.; // not ok + Float_t startzposgas = startzposglas + gdz / 2. + ggdz / 2.; // -cdz/2.+0.1+gdz +ggdz/2.; // ok + + + // needed materials + TGeoMedium* glassPlateVolMed = gGeoMan->GetMedium(GlasMedium); + TGeoMedium* noActiveGasVolMed = gGeoMan->GetMedium(NoActivGasMedium); + TGeoMedium* activeGasVolMed = gGeoMan->GetMedium(ActivGasMedium); + TGeoMedium* electronicsVolMed = gGeoMan->GetMedium(ElectronicsMedium); + + + // define counter volume + TGeoBBox* counter_box = new TGeoBBox("", cdx / 2., cdy / 2., cdz / 2.); + TGeoVolume* counter = new TGeoVolume("counter", counter_box, noActiveGasVolMed); + counter->SetLineColor(kRed); // set line color for the counter + counter->SetTransparency(70); // set transparency for the TOF + + // define single glass plate volume + TGeoBBox* glass_plate = new TGeoBBox("", gdx / 2., gdy / 2., gdz / 2.); + TGeoVolume* glass_plate_vol = new TGeoVolume("tof_glass", glass_plate, glassPlateVolMed); + glass_plate_vol->SetLineColor(kMagenta); // set line color for the glass plate + glass_plate_vol->SetTransparency(20); // set transparency for the TOF + // define single gas gap volume + TGeoBBox* gas_gap = new TGeoBBox("", ggdx / 2., ggdy / 2., ggdz / 2.); + TGeoVolume* gas_gap_vol = new TGeoVolume("Gap", gas_gap, activeGasVolMed); + gas_gap_vol->Divide("Cell", 1, nstrips, -ggdx / 2., 0); + gas_gap_vol->SetLineColor(kRed); // set line color for the gas gap + gas_gap_vol->SetTransparency(99); // set transparency for the TOF + + // place 8 gas gaps and 9 glas plates in the counter + for (Int_t igap = 0; igap <= ngaps; igap++) { + // place (ngaps+1) glass plates + Float_t zpos_glas = startzposglas + igap * dzpos; + TGeoTranslation* glass_plate_trans = new TGeoTranslation("", 0., 0., zpos_glas); + counter->AddNode(glass_plate_vol, igap, glass_plate_trans); + // place ngaps gas gaps + if (igap < ngaps) { + Float_t zpos_gas = startzposgas + igap * dzpos; + TGeoTranslation* gas_gap_trans = new TGeoTranslation("", 0., 0., zpos_gas); + counter->AddNode(gas_gap_vol, igap, gas_gap_trans); + } + // cout <<"Zpos(Glas): "<< zpos_glas << endl; + // cout <<"Zpos(Gas): "<< zpos_gas << endl; + } + + // create and place the electronics above and below the glas stack + TGeoBBox* pcb = new TGeoBBox("", dxe / 2., dye / 2., dze / 2.); + TGeoVolume* pcb_vol = new TGeoVolume("pcb", pcb, electronicsVolMed); + pcb_vol->SetLineColor(kYellow); // kCyan); // set line color for electronics + pcb_vol->SetTransparency(10); // set transparency for the TOF + for (Int_t l = 0; l < 2; l++) { + yele *= -1.; + TGeoTranslation* pcb_trans = new TGeoTranslation("", 0., yele, 0.); + counter->AddNode(pcb_vol, l, pcb_trans); + } + + + return counter; +} + +TGeoVolume* create_tof_module(Int_t modType) +{ + Int_t cType = CounterTypeInModule[modType]; + Float_t dx = Module_Size_X[modType]; + Float_t dy = Module_Size_Y[modType]; + Float_t dz = Module_Size_Z[modType]; + Float_t width_aluxl = Module_Thick_Alu_X_left; + Float_t width_aluxr = Module_Thick_Alu_X_right; + Float_t width_aluy = Module_Thick_Alu_Y; + Float_t width_aluz = Module_Thick_Alu_Z; + + Float_t shift_gas_box = (Module_Thick_Alu_X_right - Module_Thick_Alu_X_left) / 2; + + Float_t dxpos = CounterXDistance[modType]; + Float_t startxpos = CounterXStartPosition[modType]; + Float_t dzoff = CounterZDistance[modType]; + Float_t rotangle = CounterRotationAngle[modType]; + + TGeoMedium* boxVolMed = gGeoMan->GetMedium(BoxVolumeMedium); + TGeoMedium* noActiveGasVolMed = gGeoMan->GetMedium(NoActivGasMedium); + + TString moduleName = Form("module_%d", modType); + TGeoVolume* module = new TGeoVolumeAssembly(moduleName); + + TGeoBBox* alu_box = new TGeoBBox("", dx / 2., dy / 2., dz / 2.); + TGeoVolume* alu_box_vol = new TGeoVolume("alu_box", alu_box, boxVolMed); + alu_box_vol->SetLineColor(kGreen); // set line color for the alu box + alu_box_vol->SetTransparency(20); // set transparency for the TOF + TGeoTranslation* alu_box_trans = new TGeoTranslation("", 0., 0., 0.); + module->AddNode(alu_box_vol, 0, alu_box_trans); + + TGeoBBox* gas_box = + new TGeoBBox("", (dx - (width_aluxl + width_aluxr)) / 2., (dy - 2 * width_aluy) / 2., (dz - 2 * width_aluz) / 2.); + TGeoVolume* gas_box_vol = new TGeoVolume("gas_box", gas_box, noActiveGasVolMed); + gas_box_vol->SetLineColor(kYellow); // set line color for the gas box + gas_box_vol->SetTransparency(70); // set transparency for the TOF + TGeoTranslation* gas_box_trans = new TGeoTranslation("", shift_gas_box, 0., 0.); + alu_box_vol->AddNode(gas_box_vol, 0, gas_box_trans); + + for (Int_t j = 0; j < 5; j++) { //loop over counters (modules) + Float_t zpos; + if (0 == modType) { zpos = dzoff *= -1; } + else { + zpos = 0.; + } + //cout << "counter z position " << zpos << endl; + TGeoTranslation* counter_trans = new TGeoTranslation("", startxpos + j * dxpos, 0.0, zpos); + + TGeoRotation* counter_rot = new TGeoRotation(); + counter_rot->RotateY(rotangle); + TGeoCombiTrans* counter_combi_trans = new TGeoCombiTrans(*counter_trans, *counter_rot); + gas_box_vol->AddNode(gCounter[cType], j, counter_combi_trans); + } + + return module; +} + +TGeoVolume* create_new_tof_module(Int_t modType) +{ + Int_t cType = CounterTypeInModule[modType]; + Float_t dx = Module_Size_X[modType]; + Float_t dy = Module_Size_Y[modType]; + Float_t dz = Module_Size_Z[modType]; + Float_t width_aluxl = Module_Thick_Alu_X_left; + Float_t width_aluxr = Module_Thick_Alu_X_right; + Float_t width_aluy = Module_Thick_Alu_Y; + Float_t width_aluz = Module_Thick_Alu_Z; + + Float_t shift_gas_box = (Module_Thick_Alu_X_right - Module_Thick_Alu_X_left) / 2; + + Float_t dxpos = CounterXDistance[modType]; + Float_t startxpos = CounterXStartPosition[modType]; + Float_t dypos = CounterYDistance[modType]; + Float_t startypos = CounterYStartPosition[modType]; + Float_t dzoff = CounterZDistance[modType]; + Float_t rotangle = CounterRotationAngle[modType]; + + TGeoMedium* boxVolMed = gGeoMan->GetMedium(BoxVolumeMedium); + TGeoMedium* noActiveGasVolMed = gGeoMan->GetMedium(NoActivGasMedium); + + TString moduleName = Form("module_%d", modType); + + TGeoBBox* module_box = new TGeoBBox("", dx / 2., dy / 2., dz / 2.); + TGeoVolume* module = new TGeoVolume(moduleName, module_box, boxVolMed); + module->SetLineColor(kGreen); // set line color for the alu box + module->SetTransparency(20); // set transparency for the TOF + + TGeoBBox* gas_box = + new TGeoBBox("", (dx - (width_aluxl + width_aluxr)) / 2., (dy - 2 * width_aluy) / 2., (dz - 2 * width_aluz) / 2.); + TGeoVolume* gas_box_vol = new TGeoVolume("gas_box", gas_box, noActiveGasVolMed); + gas_box_vol->SetLineColor(kBlue); // set line color for the alu box + gas_box_vol->SetTransparency(50); // set transparency for the TOF + TGeoTranslation* gas_box_trans = new TGeoTranslation("", shift_gas_box, 0., 0.); + module->AddNode(gas_box_vol, 0, gas_box_trans); + + for (Int_t j = 0; j < NCounterInModule[modType]; j++) { //loop over counters (modules) + //for (Int_t j=0; j< 1; j++){ //loop over counters (modules) + Float_t xpos, ypos, zpos; + if (0 == modType || 3 == modType || 4 == modType || 5 == modType) { zpos = dzoff *= -1; } + else { + zpos = CounterZStartPosition[modType] + j * dzoff; + } + //cout << "counter z position " << zpos << endl; + xpos = startxpos + j * dxpos; + ypos = startypos + j * dypos; + + TGeoTranslation* counter_trans = new TGeoTranslation("", xpos, ypos, zpos); + + TGeoRotation* counter_rot = new TGeoRotation(); + counter_rot->RotateY(rotangle); + TGeoCombiTrans* counter_combi_trans = new TGeoCombiTrans(*counter_trans, *counter_rot); + gas_box_vol->AddNode(gCounter[cType], j, counter_combi_trans); + } + + return module; +} + + +TGeoVolume* create_tof_pole() +{ + // needed materials + TGeoMedium* boxVolMed = gGeoMan->GetMedium(BoxVolumeMedium); + TGeoMedium* airVolMed = gGeoMan->GetMedium(KeepingVolumeMedium); + + Float_t dx = Pole_Size_X; + Float_t dy = Pole_Size_Y; + Float_t dz = Pole_Size_Z; + Float_t width_alux = Pole_Thick_X; + Float_t width_aluy = Pole_Thick_Y; + Float_t width_aluz = Pole_Thick_Z; + + TGeoVolume* pole = new TGeoVolumeAssembly("Pole"); + TGeoBBox* pole_alu_box = new TGeoBBox("", dx / 2., dy / 2., dz / 2.); + TGeoVolume* pole_alu_vol = new TGeoVolume("pole_alu", pole_alu_box, boxVolMed); + pole_alu_vol->SetLineColor(kGreen); // set line color for the alu box + pole_alu_vol->SetTransparency(20); // set transparency for the TOF + TGeoTranslation* pole_alu_trans = new TGeoTranslation("", 0., 0., 0.); + pole->AddNode(pole_alu_vol, 0, pole_alu_trans); + + Float_t air_dx = dx / 2. - width_alux; + Float_t air_dy = dy / 2. - width_aluy; + Float_t air_dz = dz / 2. - width_aluz; + + // cout << "My pole." << endl; + if (air_dx <= 0.) cout << "ERROR - No air volume in pole X, size: " << air_dx << endl; + if (air_dy <= 0.) cout << "ERROR - No air volume in pole Y, size: " << air_dy << endl; + if (air_dz <= 0.) cout << "ERROR - No air volume in pole Z, size: " << air_dz << endl; + + if ((air_dx > 0.) && (air_dy > 0.) && (air_dz > 0.)) // crate air volume only, if larger than zero + { + TGeoBBox* pole_air_box = new TGeoBBox("", air_dx, air_dy, air_dz); + // TGeoBBox* pole_air_box = new TGeoBBox("", dx/2.-width_alux, dy/2.-width_aluy, dz/2.-width_aluz); + TGeoVolume* pole_air_vol = new TGeoVolume("pole_air", pole_air_box, airVolMed); + pole_air_vol->SetLineColor(kYellow); // set line color for the alu box + pole_air_vol->SetTransparency(70); // set transparency for the TOF + TGeoTranslation* pole_air_trans = new TGeoTranslation("", 0., 0., 0.); + pole_alu_vol->AddNode(pole_air_vol, 0, pole_air_trans); + } + else + cout << "Skipping pole_air_vol, no thickness: " << air_dx << " " << air_dy << " " << air_dz << endl; + + return pole; +} + +TGeoVolume* create_tof_bar(Float_t dx, Float_t dy, Float_t dz) +{ + // needed materials + TGeoMedium* boxVolMed = gGeoMan->GetMedium(BoxVolumeMedium); + TGeoMedium* airVolMed = gGeoMan->GetMedium(KeepingVolumeMedium); + + Float_t width_alux = Pole_Thick_X; + Float_t width_aluy = Pole_Thick_Y; + Float_t width_aluz = Pole_Thick_Z; + + TGeoVolume* bar = new TGeoVolumeAssembly("Bar"); + TGeoBBox* bar_alu_box = new TGeoBBox("", dx / 2., dy / 2., dz / 2.); + TGeoVolume* bar_alu_vol = new TGeoVolume("bar_alu", bar_alu_box, boxVolMed); + bar_alu_vol->SetLineColor(kGreen); // set line color for the alu box + bar_alu_vol->SetTransparency(20); // set transparency for the TOF + TGeoTranslation* bar_alu_trans = new TGeoTranslation("", 0., 0., 0.); + bar->AddNode(bar_alu_vol, 0, bar_alu_trans); + + TGeoBBox* bar_air_box = new TGeoBBox("", dx / 2. - width_alux, dy / 2. - width_aluy, dz / 2. - width_aluz); + TGeoVolume* bar_air_vol = new TGeoVolume("bar_air", bar_air_box, airVolMed); + bar_air_vol->SetLineColor(kYellow); // set line color for the alu box + bar_air_vol->SetTransparency(70); // set transparency for the TOF + TGeoTranslation* bar_air_trans = new TGeoTranslation("", 0., 0., 0.); + bar_alu_vol->AddNode(bar_air_vol, 0, bar_air_trans); + + return bar; +} + +void position_tof_poles(Int_t modType) +{ + + TGeoTranslation* pole_trans = NULL; + + Int_t numPoles = 0; + for (Int_t i = 0; i < NumberOfPoles; i++) { + if (i < 2) { + pole_trans = new TGeoTranslation("", -Pole_Offset + 2.0, 0., Pole_ZPos[i]); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gPole, numPoles, pole_trans); + numPoles++; + } + else { + Float_t xPos = Pole_Offset + Pole_Size_X / 2. + Pole_Col[i] * DxColl; + Float_t zPos = Pole_ZPos[i]; + pole_trans = new TGeoTranslation("", xPos, 0., zPos); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gPole, numPoles, pole_trans); + numPoles++; + + pole_trans = new TGeoTranslation("", -xPos, 0., zPos); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gPole, numPoles, pole_trans); + numPoles++; + } + cout << " Position Pole " << numPoles << " at z=" << Pole_ZPos[i] << endl; + } +} + +void position_tof_bars(Int_t modType) +{ + + TGeoTranslation* bar_trans = NULL; + + Int_t numBars = 0; + Int_t i; + Float_t xPos; + Float_t yPos; + Float_t zPos; + + for (i = 0; i < NumberOfBars; i++) { + + xPos = Bar_XPos[i]; + zPos = Bar_ZPos[i]; + yPos = Pole_Size_Y / 2. + Bar_Size_Y / 2.; + + bar_trans = new TGeoTranslation("", xPos, yPos, zPos); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gBar[i], numBars, bar_trans); + numBars++; + + bar_trans = new TGeoTranslation("", xPos, -yPos, zPos); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gBar[i], numBars, bar_trans); + numBars++; + + bar_trans = new TGeoTranslation("", -xPos, yPos, zPos); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gBar[i], numBars, bar_trans); + numBars++; + + bar_trans = new TGeoTranslation("", -xPos, -yPos, zPos); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gBar[i], numBars, bar_trans); + numBars++; + } + cout << " Position Bar " << numBars << " at z=" << Bar_ZPos[i] << endl; + + // horizontal frame bars + i = NumberOfBars; + NumberOfBars++; + // no bar + // gBar[i]=create_tof_bar(2.*xPos+Pole_Size_X,Bar_Size_Y,Bar_Size_Y); + + zPos = Pole_ZPos[0] + Pole_Size_Z / 2.; + bar_trans = new TGeoTranslation("", 0., yPos, zPos); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gBar[i], numBars, bar_trans); + numBars++; + + bar_trans = new TGeoTranslation("", 0., -yPos, zPos); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gBar[i], numBars, bar_trans); + numBars++; +} + +void position_inner_tof_modules(Int_t modNType) +{ + TGeoTranslation* module_trans = NULL; + + // for (Int_t j=0; j<modNType; j++){ + // for (Int_t j=1; j<modNType; j++){ + Int_t modType; + Int_t modNum[4] = {4 * 0}; + + // May2021 setup + const Int_t NModules = 6; + Double_t xPos = 0.; + Double_t yPos = 0.; + Double_t zPos = TOF_Z_Front; + const Int_t ModType[NModules] = {0, 0, 0, 0, 0, 2}; + const Double_t ModDx[NModules] = {-53.5, -57.3, -66.8, 0., 0., -64.}; + //const Double_t ModDx[NModules] = { 1.5, 0., -1.5, 49.8, 55.8}; + const Double_t ModDy[NModules] = {0., 0., 0., 0., 0., -6.}; + const Double_t ModDz[NModules] = {0., 16.5, 59., 0., 59.5, 34.}; // regular + const Double_t ModAng[NModules] = {-90., -90., -90., -90., -90.0, -90.}; + TGeoRotation* module_rot = NULL; + TGeoCombiTrans* module_combi_trans = NULL; + + for (Int_t iMod = 0; iMod < NModules; iMod++) { + module_trans = new TGeoTranslation("", xPos + ModDx[iMod], yPos + ModDy[iMod], zPos + ModDz[iMod]); + module_rot = new TGeoRotation(); + module_rot->RotateZ(ModAng[iMod]); + module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[ModType[iMod]], modNum[ModType[iMod]], module_combi_trans); + cout << "Placed Module " << modNum[ModType[iMod]] << ", Type " << ModType[iMod] << endl; + modNum[ModType[iMod]]++; + } +} + + +void position_Dia(Int_t modNType) +{ + TGeoTranslation* module_trans = NULL; + TGeoRotation* module_rot = new TGeoRotation(); + module_rot->RotateZ(Dia_rotate_Z); + TGeoCombiTrans* module_combi_trans = NULL; + + // Int_t numModules=(Int_t)( (Inner_Module_Last_Y_Position-Inner_Module_First_Y_Position)/Module_Size_Y[modType])+1; + Float_t yPos = Dia_First_Y_Position; + Int_t ii = 0; + Float_t xPos = Dia_X_Offset; + Float_t zPos = Dia_Z_Position; + + Int_t modNum = 0; + for (Int_t j = 0; j < modNType; j++) { + Int_t modType = Dia_Types[j]; + for (Int_t i = 0; i < Dia_Number[j]; i++) { + ii++; + module_trans = new TGeoTranslation("", xPos, yPos, zPos); + module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum, module_combi_trans); + modNum++; + } + } +} + +void position_Star2(Int_t modNType) +{ + TGeoTranslation* module_trans = NULL; + TGeoCombiTrans* module_combi_trans = NULL; + TGeoRotation* module_rot = NULL; + Float_t yPos = Star2_First_Y_Position; + Float_t zPos = Star2_First_Z_Position; + Int_t ii = 0; + + Int_t modNum = 0; + for (Int_t j = 0; j < modNType; j++) { + Int_t modType = Star2_Types[j]; + Float_t xPos = Star2_X_Offset[j]; + module_rot = new TGeoRotation(); + module_rot->RotateZ(Star2_rotate_Z[j]); + for (Int_t i = 0; i < Star2_Number[j]; i++) { + ii++; + module_trans = new TGeoTranslation("", xPos, yPos, zPos); + module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum, module_combi_trans); + modNum++; + yPos += Star2_Delta_Y_Position; + zPos += Star2_Delta_Z_Position; + } + } +} + +void position_Buc(Int_t modNType) +{ + TGeoTranslation* module_trans = NULL; + TGeoRotation* module_rot = new TGeoRotation(); + module_rot->RotateZ(Buc_rotate_Z); + TGeoCombiTrans* module_combi_trans = NULL; + + Float_t yPos = Buc_First_Y_Position; + Float_t zPos = Buc_First_Z_Position; + Int_t ii = 0; + + Int_t modNum = 0; + for (Int_t j = 0; j < modNType; j++) { + Int_t modType = Buc_Types[j]; + Float_t xPos = Buc_X_Offset[j]; + for (Int_t i = 0; i < Buc_Number[j]; i++) { + ii++; + module_trans = new TGeoTranslation("", xPos, yPos, zPos); + module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum, module_combi_trans); + modNum++; + yPos += Buc_Delta_Y_Position; + zPos += Buc_Delta_Z_Position; + } + } +} + +void position_cer_modules(Int_t modNType) +{ + Int_t ii = 0; + Int_t modNum = 0; + for (Int_t j = 1; j < modNType; j++) { + Int_t modType = Cer_Types[j]; + Float_t xPos = Cer_X_Position[j]; + Float_t yPos = Cer_Y_Position[j]; + Float_t zPos = Cer_Z_Position[j]; + TGeoTranslation* module_trans = NULL; + TGeoRotation* module_rot = new TGeoRotation(Form("Cer%d", j), Cer_rotate_Z[j], -MeanTheta, 0.); + // module_rot->RotateZ(Cer_rotate_Z[j]); + TGeoCombiTrans* module_combi_trans = NULL; + + for (Int_t i = 0; i < Cer_Number[j]; i++) { + ii++; + cout << "Position Ceramic Module " << i << " of " << Cer_Number[j] << " Type " << modType << " at X = " << xPos + << ", Y = " << yPos << ", Z = " << zPos << endl; + // Front staggered module (Top if pair), top + module_trans = new TGeoTranslation("", xPos, yPos, zPos); + module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum, module_combi_trans); + // modNum++; + } + } +} + +void position_CERN(Int_t modNType) +{ + TGeoTranslation* module_trans = NULL; + TGeoRotation* module_rot = new TGeoRotation(); + module_rot->RotateZ(CERN_rotate_Z); + TGeoCombiTrans* module_combi_trans = NULL; + + // Int_t numModules=(Int_t)( (Inner_Module_Last_Y_Position-Inner_Module_First_Y_Position)/Module_Size_Y[modType])+1; + Float_t yPos = CERN_First_Y_Position; + Int_t ii = 0; + Float_t xPos = CERN_X_Offset; + Float_t zPos = CERN_Z_Position; + + for (Int_t j = 0; j < modNType; j++) { + Int_t modType = CERN_Types[j]; + Int_t modNum = 0; + for (Int_t i = 0; i < CERN_Number[j]; i++) { + ii++; + module_trans = new TGeoTranslation("", xPos, yPos, zPos); + module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum, module_combi_trans); + modNum++; + } + } +} + +void position_side_tof_modules(Int_t modNType) +{ + TGeoTranslation* module_trans = NULL; + TGeoRotation* module_rot = new TGeoRotation(); + module_rot->RotateZ(180.); + TGeoCombiTrans* module_combi_trans = NULL; + + // Int_t numModules=(Int_t)( (Inner_Module_Last_Y_Position-Inner_Module_First_Y_Position)/Module_Size_Y[modType])+1; + Float_t yPos = 0.; //Inner_Module_First_Y_Position; + Int_t ii = 0; + for (Int_t j = 0; j < modNType; j++) { + Int_t modType = InnerSide_Module_Types[j]; + Int_t modNum = 0; + for (Int_t i = 0; i < InnerSide_Module_Number[j]; i++) { + ii++; + cout << "InnerSide ii " << ii << " Last " << Last_Size_Y << "," << Last_Over_Y << endl; + Float_t DeltaY = Module_Size_Y[modType] + Last_Size_Y - 2. * (Module_Over_Y[modType] + Last_Over_Y); + if (ii > 1) { yPos += DeltaY; } + Last_Size_Y = Module_Size_Y[modType]; + Last_Over_Y = Module_Over_Y[modType]; + Float_t xPos = InnerSide_Module_X_Offset; + Float_t zPos = Wall_Z_Position; + cout << "Position InnerSide Module " << i << " of " << InnerSide_Module_Number[j] << " Type " << modType + << " at Y = " << yPos << " Ysize = " << Module_Size_Y[modType] << " DeltaY = " << DeltaY << endl; + + module_trans = new TGeoTranslation("", xPos, yPos, zPos); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum, module_trans); + modNum++; + + module_trans = new TGeoTranslation("", -xPos, yPos, zPos); + module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum, module_combi_trans); + modNum++; + + if (ii > 1) { + module_trans = new TGeoTranslation("", xPos, -yPos, zPos); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum, module_trans); + modNum++; + + module_trans = new TGeoTranslation("", -xPos, -yPos, zPos); + module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum, module_combi_trans); + modNum++; + + module_trans = new TGeoTranslation("", xPos, yPos - DeltaY / 2, zPos + Module_Size_Z[modType]); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum, module_trans); + modNum++; + + module_trans = new TGeoTranslation("", -xPos, yPos - DeltaY / 2, zPos + Module_Size_Z[modType]); + module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum, module_combi_trans); + modNum++; + + module_trans = new TGeoTranslation("", xPos, -(yPos - DeltaY / 2), zPos + Module_Size_Z[modType]); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum, module_trans); + modNum++; + + module_trans = new TGeoTranslation("", -xPos, -(yPos - DeltaY / 2), zPos + Module_Size_Z[modType]); + module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum, module_combi_trans); + modNum++; + } + } + } +} + +void position_outer_tof_modules(Int_t nCol) //modType, Int_t col1, Int_t col2) +{ + TGeoTranslation* module_trans = NULL; + TGeoRotation* module_rot = new TGeoRotation(); + module_rot->RotateZ(180.); + TGeoCombiTrans* module_combi_trans = NULL; + + // Int_t numModules=(Int_t)( (Outer_Module_Last_Y_Position-Outer_Module_First_Y_Position)/Module_Size_Y[modType])+1; + + Int_t modNum[NofModuleTypes]; + for (Int_t k = 0; k < NofModuleTypes; k++) { + modNum[k] = 0; + } + + Float_t zPos = Wall_Z_Position; + for (Int_t j = 0; j < nCol; j++) { + Float_t xPos = Outer_Module_X_Offset + ((j + 1) * DxColl); + Last_Size_Y = 0.; + Last_Over_Y = 0.; + Float_t yPos = 0.; + Int_t ii = 0; + Float_t DzPos = 0.; + for (Int_t k = 0; k < Outer_Module_NTypes; k++) { + Int_t modType = Outer_Module_Types[k][j]; + if (Module_Size_Z[modType] > DzPos) { + if (Outer_Module_Number[k][j] > 0) { DzPos = Module_Size_Z[modType]; } + } + } + + zPos -= 2. * DzPos; //((j+1)*2*Module_Size_Z[modType]); + + Pole_ZPos[NumberOfPoles] = zPos; + Pole_Col[NumberOfPoles] = j + 1; + NumberOfPoles++; + Pole_ZPos[NumberOfPoles] = zPos + DzPos; + Pole_Col[NumberOfPoles] = j + 1; + NumberOfPoles++; + //if (j+1==nCol) { + if (1) { + Pole_ZPos[NumberOfPoles] = Pole_ZPos[0]; + Pole_Col[NumberOfPoles] = j + 1; + NumberOfPoles++; + + Bar_Size_Z = Pole_ZPos[0] - zPos; + gBar[NumberOfBars] = create_tof_bar(Bar_Size_X, Bar_Size_Y, Bar_Size_Z); + Bar_ZPos[NumberOfBars] = zPos + Bar_Size_Z / 2. - Pole_Size_Z / 2.; + Bar_XPos[NumberOfBars] = xPos + Pole_Offset; + NumberOfBars++; + } + + for (Int_t k = 0; k < Outer_Module_NTypes; k++) { + Int_t modType = Outer_Module_Types[k][j]; + Int_t numModules = Outer_Module_Number[k][j]; + + cout << " Outer: position " << numModules << " of type " << modType << " in col " << j << " at z = " << zPos + << ", DzPos = " << DzPos << endl; + for (Int_t i = 0; i < numModules; i++) { + ii++; + cout << "Outer ii " << ii << " Last " << Last_Size_Y << "," << Last_Over_Y << endl; + Float_t DeltaY = Module_Size_Y[modType] + Last_Size_Y - 2. * (Module_Over_Y[modType] + Last_Over_Y); + if (ii > 1) { yPos += DeltaY; } + Last_Size_Y = Module_Size_Y[modType]; + Last_Over_Y = Module_Over_Y[modType]; + cout << "Position Outer Module " << i << " of " << Outer_Module_Number[k][j] << " Type " << modType << "(#" + << modNum[modType] << ") " + << " at Y = " << yPos << " Ysize = " << Module_Size_Y[modType] << " DeltaY = " << DeltaY << endl; + + module_trans = new TGeoTranslation("", xPos, yPos, zPos); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum[modType], module_trans); + modNum[modType]++; + + module_trans = new TGeoTranslation("", -xPos, yPos, zPos); + module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum[modType], module_combi_trans); + modNum[modType]++; + + if (ii > 1) { + module_trans = new TGeoTranslation("", xPos, -yPos, zPos); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum[modType], module_trans); + modNum[modType]++; + module_trans = new TGeoTranslation("", -xPos, -yPos, zPos); + module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum[modType], module_combi_trans); + modNum[modType]++; + + // second layer + module_trans = new TGeoTranslation("", xPos, yPos - DeltaY / 2., zPos + DzPos); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum[modType], module_trans); + modNum[modType]++; + module_trans = new TGeoTranslation("", -xPos, yPos - DeltaY / 2., zPos + DzPos); + module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum[modType], module_combi_trans); + modNum[modType]++; + + module_trans = new TGeoTranslation("", xPos, -(yPos - DeltaY / 2.), zPos + DzPos); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum[modType], module_trans); + modNum[modType]++; + module_trans = new TGeoTranslation("", -xPos, -(yPos - DeltaY / 2.), zPos + DzPos); + module_combi_trans = new TGeoCombiTrans(*module_trans, *module_rot); + gGeoMan->GetVolume(geoVersionStand)->AddNode(gModules[modType], modNum[modType], module_combi_trans); + modNum[modType]++; + } + } + } + } +} + + +void dump_info_file() +{ + TDatime datetime; // used to get timestamp + + printf("writing info file: %s\n", FileNameInfo.Data()); + + FILE* ifile; + ifile = fopen(FileNameInfo.Data(), "w"); + + if (ifile == NULL) { + printf("error opening %s\n", FileNameInfo.Data()); + exit(1); + } + + fprintf(ifile, "#\n## %s information file\n#\n\n", geoVersion.Data()); + + fprintf(ifile, "# created %d\n\n", datetime.GetDate()); + + fprintf(ifile, "# TOF setup\n"); + if (TOF_Z_Front == 450) fprintf(ifile, "SIS 100 hadron setup\n"); + if (TOF_Z_Front == 600) fprintf(ifile, "SIS 100 electron\n"); + if (TOF_Z_Front == 650) fprintf(ifile, "SIS 100 muon\n"); + if (TOF_Z_Front == 880) fprintf(ifile, "SIS 300 electron\n"); + if (TOF_Z_Front == 1020) fprintf(ifile, "SIS 300 muon\n"); + fprintf(ifile, "\n"); + + const Float_t TOF_Z_Back = Wall_Z_Position + 1.5 * Module_Size_Z[0]; // back of TOF wall + + fprintf(ifile, "# envelope\n"); + // Show extension of TRD + fprintf(ifile, "%7.2f cm start of TOF (z)\n", TOF_Z_Front); + fprintf(ifile, "%7.2f cm end of TOF (z)\n", TOF_Z_Back); + fprintf(ifile, "\n"); + + // Layer thickness + fprintf(ifile, "# central tower position\n"); + fprintf(ifile, "%7.2f cm center of staggered, front RPC cell at x=0\n", Wall_Z_Position); + fprintf(ifile, "\n"); + + fclose(ifile); +} diff --git a/macro/mcbm/geometry/trd/Create_TRD_Geometry_v21a.C b/macro/mcbm/geometry/trd/Create_TRD_Geometry_v21a.C new file mode 100644 index 0000000000..c5dc857379 --- /dev/null +++ b/macro/mcbm/geometry/trd/Create_TRD_Geometry_v21a.C @@ -0,0 +1,4521 @@ +/* Copyright (C) 2020 GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt + SPDX-License-Identifier: GPL-3.0-only + Authors: Florian Uhlig [committer] */ + +/// +/// \file Create_TRD_Geometry_v21a.C +/// \brief Generates TRD geometry in Root format. +/// + +// 2021-07-25 - AB - v21a - based on v21b, add 2 TRD2D modules and their support structure for the 2021 setup +// 2020-05-25 - DE - v21b - based on v20a, use 2 TRD modules for 2021 setup +// 2020-05-23 - DE - v20a - add support structure to TRD v18q, realign module in x +// 2018-08-24 - DE - v18q - use only 1st 2 layers of TRD in 2018 setup +// 2017-11-22 - DE - v18n - do not generate mBUCH at z=125 cm, only mTRD +// 2017-11-22 - DE - v18m - mBUCH at z=125 cm, mTRD at z=149, 171, 193 and 215 cm - layer pitch 22 cm from CAD +// 2017-11-03 - DE - v18l - shift mTRD to z=140 cm for acceptance matching with mSTS (= same result as v18g) +// 2017-11-03 - DE - v18k - plot 4 mTRD modules first, then mBUCH to simplyfy the realignment in x (= same result as v18j) +// 2017-11-02 - DE - v18j - move Muenster TRD modules back to original positions in x (fix bug in v18i) +// 2017-10-17 - DE - v18i - add Bucharest 60x60 cm2 Bucharest TRD module with FASP ASICs +// 2017-05-16 - DE - v18e - re-align all TRD modules to same theta angle using left side of 4th TRD module as reference +// 2017-05-02 - DE - v18a - re-base miniTRD v18e on CBM TRD v17a +// 2017-04-28 - DE - v17 - implement power bus bars as defined in the TDR +// 2017-04-26 - DE - v17 - add aluminium ledge around backpanel +// 2017-01-10 - DE - v17a_3e - replace 6 ultimate density by 9 super density FEBs for TRD type 1 modules +// 2016-07-05 - FU - v16a_3e - identical to v15a, change the way the trd volume is exported to resolve a bug with TGeoShape destructor +// 2015-01-08 - DE - v15a_3e - reduce frame thickness in large modules to 15 mm instead of 20 mm +// 2014-06-25 - DE - v14a_3e - consists of only 3 small and 3 large modules types (was 4+4 before) +// 2014-06-25 - DE - v14a_3e - inner part of all 3 stations is now identical +// 2014-05-02 - DE - v14a_3e - redesign inner part of station 3, now with 5x5-1 small modules, like in station 1 and station 2 +// 2014-05-02 - DE - v14a_3e - include optional GBTX readout boards on each module +// 2014-05-02 - DE - v14a_3e - introduce 3x5=15 Spadic FEBs for ultimate density on module type 1 +// +// 2013-11-14 - DE - v13q_3e - generate information about pad plane layout (CbmTrdPads_v14a.h) for all module types in this macro +// +// 2013-11-04 - DE - v13p4 - adapt the number of front-end boards to the pad layout of the 540 mm modules +// 2013-11-04 - DE - v13p4 - use 8 module types (4x S + 4x L) to better match the occupancy +// 2013-10-31 - DE - v13p4 - modify the support structure of station 1 to match with the MUCH/RICH platform +// 2013-10-29 - DE - v13p4 - build lattice grid as TGeoBBox instead of VolumeAssembly - in run_sim.C save 9% of time compared to v13p7 +// 2013-10-29 - DE - v13p4 - build lattice grid as TGeoBBox instead of CompositeShape - in run_sim.C save 18% of time compared to v13p6 +// +// 2013-10-28 - DE - introduce new geometry naming scheme: v13p1 - SIS 100 hadron +// 2013-10-28 - DE - introduce new geometry naming scheme: v13p2 - SIS 100 electron +// 2013-10-28 - DE - introduce new geometry naming scheme: v13p3 - SIS 100 muon +// 2013-10-28 - DE - introduce new geometry naming scheme: v13p4 - SIS 300 electron +// 2013-10-28 - DE - introduce new geometry naming scheme: v13p5 - SIS 300 muon +// 2013-10-28 - DE - add option to draw the magnetic field vector in the magnet +// 2013-09-27 - DE - do not use TGeoXtru to build the supports, use TGeoBBox instead +// +// 2013-06-25 - DE - v13g trd300_rich (10 layers, z = 4100 ) - TRD right behind SIS300 RICH +// 2013-06-25 - DE - v13h trd100_sts ( 4 layers, z = 2600 ) - TRD completely on RICH/MUCH platform to allow TOF to move upstream +// 2013-06-25 - DE - v13i trd100_rich ( 2 layers, z = 4100 ) - TRD right behind RICH +// 2013-06-25 - DE - v13j trd100_rich ( 3 layers, z = 4100 ) - TRD right behind RICH +// 2013-06-25 - DE - v13k trd100_rich ( 4 layers, z = 4100 ) - TRD right behind RICH +// 2013-06-25 - DE - --- trd100_much_2_absorbers ( 4 layers, z = 4300 ) - same as version at z = 4600 +// 2013-06-25 - DE - v13l trd100_much_3_absorbers ( 4 layers, z = 4600 ) - TRD right behind SIS100 MUCH +// 2013-06-25 - DE - v13m trd300_much_6_absorbers (10 layers, z = 5500 ) - TRD right behind SIS300 MUCH +// 2013-06-25 - DE - v13n trd300_rich_stretched (10 layers, z = 4600 ) - TRD stretched behind SIS300 RICH +// +// 2013-06-19 - DE - add TRD (I, II, III) labels on support structure +// 2013-05-29 - DE - allow for flexible TRD z-positions defined by position of layer01 +// 2013-05-23 - DE - remove "trd_" prefix from node names (except top node) +// 2013-05-22 - DE - radiators G30 (z=240 mm) +// 2013-05-22 - DE - radiators H (z=275 mm - 125 * 2.2mm), (H++ z=335 mm) +// 2013-05-22 - DE - radiators B++ (z=254 mm - 350 * 0.724 mm), K++ (z=254 mm - 350 * 0.724 mm) +// 2013-04-17 - DE - introduce volume assembly for layers, e.g. trd_layer03 +// 2013-03-26 - DE - use Air as ASIC material +// 2013-03-26 - DE - put support structure into its own assembly +// 2013-03-26 - DE - move TRD upstream to z=400m +// 2013-03-26 - DE - RICH will probably end at z=380 cm, TRD can move to 400 cm +// 2013-03-25 - DE - shrink active area from 570 to 540 mm and 960 to 910 mm +// 2013-03-06 - DE - add ASICs on FEBs +// 2013-03-05 - DE - introduce supports for SIS100 and SIS300 +// 2013-03-05 - DE - replace all Float_t by Double_t +// 2013-01-21 - DE - introduce TRD media, use TRDG10 as material for pad plane and FEBs +// 2013-01-21 - DE - put backpanel into the geometry +// 2013-01-11 - DE - allow for misalignment of TRD modules +// 2012-11-04 - DE - add kapton foil, add FR4 padplane +// 2012-11-03 - DE - add lattice grid on entrance window as CompositeShape + +// TODO: +// - use Silicon as ASIC material + +// in root all sizes are given in cm + +#include "TDatime.h" +#include "TFile.h" +#include "TGeoArb8.h" +#include "TGeoCompositeShape.h" +#include "TGeoCone.h" +#include "TGeoManager.h" +#include "TGeoMaterial.h" +#include "TGeoMatrix.h" +#include "TGeoMedium.h" +#include "TGeoPgon.h" +#include "TGeoTube.h" +#include "TGeoVolume.h" +#include "TGeoXtru.h" +#include "TList.h" +#include "TRandom3.h" +#include "TString.h" +#include "TSystem.h" + +#include <iostream> + +// Name of output file with geometry +const TString tagVersion = "v21a_mcbm"; +//const TString subVersion = "_1h"; +//const TString subVersion = "_1e"; +//const TString subVersion = "_1m"; +//const TString subVersion = "_3e"; +//const TString subVersion = "_3m"; + +const Int_t setupid = 1; // 1e is the default +//const Double_t zfront[5] = { 260., 410., 360., 410., 550. }; +const Double_t zfront[5] = {260., 177., 360., 410., 550.}; // move 1st TRD to z=177 cm +//const Double_t zfront[5] = { 260., 140., 360., 410., 550. }; +const TString setupVer[5] = {"_1h", "_1e", "_1m", "_3e", "_3m"}; +const TString subVersion = setupVer[setupid]; + +const TString geoVersion = "trd_" + tagVersion; // + subVersion; +const TString FileNameSim = geoVersion + ".geo.root"; +const TString FileNameGeo = geoVersion + "_geo.root"; +const TString FileNameInfo = geoVersion + ".geo.info"; +const TString FileNamePads = "CbmTrdPads_" + tagVersion + ".h"; + +// display switches +const Bool_t IncludeRadiator = false; // false; // true, if radiator is included in geometry +const Bool_t IncludeLattice = true; // false; // true, if lattice grid is included in geometry + +const Bool_t IncludeKaptonFoil = true; // false; // true, if entrance window is included in geometry +const Bool_t IncludeGasFrame = true; // false; // true, if frame around gas volume is included in geometry +const Bool_t IncludePadplane = true; // false; // true, if padplane is included in geometry +const Bool_t IncludeBackpanel = true; // false; // true, if backpanel is included in geometry +const Bool_t IncludeAluLedge = true; // false; // true, if Al-ledge around the backpanel is included in geometry +const Bool_t IncludeGibbet = true; // false; // true, if mTRD gibbet support to be drawn +const Bool_t IncludePowerbars = false; // false; // true, if LV copper bus bars to be drawn + +const Bool_t IncludeFebs = true; // false; // true, if FEBs are included in geometry +const Bool_t IncludeRobs = true; // true, if ROBs are included in geometry +const Bool_t IncludeAsics = true; // true, if ASICs are included in geometry +const Bool_t IncludeSupports = false; // false; // true, if support structure is included in geometry +const Bool_t IncludeLabels = false; // false; // true, if TRD (I, II, III) labels are plotted in (VisLevel 5) +const Bool_t IncludeFieldVector = false; // true, if magnetic field vector to be shown (in the magnet) + +// positioning switches +const Bool_t DisplaceRandom = false; // true; // false; // add random displacement of modules for alignment study +const Bool_t RotateRandom = false; // true; // false; // add random rotation of modules for alignment study +const Bool_t DoExplode = false; // true, // false; // add random displacement of modules for alignment study + +// positioning parameters +const Double_t maxdx = 0.2; // max +- 0.1 cm shift in x +const Double_t maxdy = 0.2; // max +- 0.1 cm shift in y +const Double_t maxdz = 1.0; // max +- 1.0 cm shift in z + +const Double_t maxdrotx = 2.0; // 20.0; // max rotation around x +const Double_t maxdroty = 2.0; // 20.0; // max rotation around y +const Double_t maxdrotz = 2.0; // 20.0; // max rotation around z + +const Double_t ExplodeFactor = 1.02; // 1.02; // Factor by which modules are exploded in the x/y plane + +// initialise random numbers +TRandom3 r3(0); + +// Parameters defining the layout of the complete detector build out of different detector layers. +const Int_t MaxLayers = 10; // max layers + +// select layers to display +// +//const Int_t ShowLayer[MaxLayers] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // 1st layer only +//const Int_t ShowLayer[MaxLayers] = { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 }; // 2nd layer only +//const Int_t ShowLayer[MaxLayers] = { 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 }; // 5th layer only +//const Int_t ShowLayer[MaxLayers] = { 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 }; // 6th layer only +//const Int_t ShowLayer[MaxLayers] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 }; // 9th layer only +//const Int_t ShowLayer[MaxLayers] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; // 10th layer only +// +//const Int_t ShowLayer[MaxLayers] = { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 }; // Station 1, layer 1, 2 +//const Int_t ShowLayer[MaxLayers] = { 0, 0, 0, 0, 1, 1, 0, 0, 0, 0 }; // Station 2, layer 5, 6 +//const Int_t ShowLayer[MaxLayers] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 }; // Station 3, layer 9,10 +//const Int_t ShowLayer[MaxLayers] = { 1, 1, 0, 0, 1, 1, 0, 0, 0, 0 }; // Station 1 and 2 +//const Int_t ShowLayer[MaxLayers] = { 1, 1, 0, 0, 1, 1, 1, 0, 1, 1 }; // Station 1, 2 and 3 +// +//const Int_t ShowLayer[MaxLayers] = { 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 }; // SIS100-2l // 1: plot, 0: hide +//const Int_t ShowLayer[MaxLayers] = { 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; // SIS100-3l // 1: plot, 0: hide +// +//const Int_t ShowLayer[MaxLayers] = { 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 }; // SIS100-4l // 1: plot, 0: hide +//const Int_t ShowLayer[MaxLayers] = { 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 }; // SIS300-mu // 1: plot, 0: hide +//const Int_t ShowLayer[MaxLayers] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; // SIS300-e // 1: plot, 0: hide +Int_t ShowLayer[MaxLayers] = {1, 1, 1, 1, 0, 0, 0, 0, 0, 0}; // SIS100-4l is default + +Int_t BusBarOrientation[MaxLayers] = {1, 1, 0, 0, 1, 0, 0, 0, 0, 0}; // 1 = vertical + +Int_t PlaneId[MaxLayers]; // automatically filled with layer ID + +const Int_t LayerType[MaxLayers] = {10, 11, 20, 20, 20, 21, + 20, 21, 30, 31}; // ab: a [1-4] - layer type, b [0,1] - vertical/horizontal pads +// ### Layer Type 20 is mCBM Layer Type 2 with Buch prototype module (type 4) with vertical pads +// ### Layer Type 11 is Layer Type 1 with detector modules rotated by 90?? +// ### Layer Type 21 is Layer Type 2 with detector modules rotated by 90?? +// ### Layer Type 31 is Layer Type 3 with detector modules rotated by 90?? +// In the subroutine creating the layers this is recognized automatically + +const Int_t LayerNrInStation[MaxLayers] = {1, 2, 3, 4, 1, 2, 3, 4, 1, 2}; + +Double_t LayerPosition[MaxLayers] = {0.}; // start position = 0 - 2016-07-12 - DE + +// 5x z-positions from 260 till 550 cm +//Double_t LayerPosition[MaxLayers] = { 260. }; // start position - 2013-10-28 - DE - v14_1h - SIS 100 hadron ( 4 layers, z = 2600 ) +//Double_t LayerPosition[MaxLayers] = { 410. }; // start position - 2013-10-28 - DE - v14_1e - SIS 100 electron ( 4 layers, z = 4100 ) +//Double_t LayerPosition[MaxLayers] = { 360. }; // start position - 2014-06-16 - DE - v14_1m - SIS 100 muon ( 4 layers, z = 3600 ) was 460. +//Double_t LayerPosition[MaxLayers] = { 410. }; // start position - 2013-10-28 - DE - v14_3e - SIS 300 electron (10 layers, z = 4100 ) +//Double_t LayerPosition[MaxLayers] = { 550. }; // start position - 2013-10-28 - DE - v14_3m - SIS 300 muon 6_abs (10 layers, z = 5500 ) +// +// obsolete variants +//Double_t LayerPosition[MaxLayers] = { 460. }; // start position - 2013-10-28 - DE - v13x3 - SIS 100 muon ( 4 layers, z = 4600 ) +//Double_t LayerPosition[MaxLayers] = { 410. }; // start position - 2013-06-25 - DE - v13i trd100_rich ( 2 layers, z = 4100 ) +//Double_t LayerPosition[MaxLayers] = { 410. }; // start position - 2013-06-25 - DE - v13j trd100_rich ( 3 layers, z = 4100 ) +//Double_t LayerPosition[MaxLayers] = { 430. }; // start position - 2013-06-25 - DE - --- trd100_much_2_absorbers ( 4 layers, z = 4300 ) +//Double_t LayerPosition[MaxLayers] = { 460. }; // start position - 2013-06-25 - DE - v13n trd300_rich_stretched (10 layers, z = 4600 ) + + +const Double_t LayerThickness = 22.0; // miniCBM - Thickness of one TRD layer in cm +//const Double_t LayerThickness = 25.0; // miniCBM - Thickness of one TRD layer in cm +//const Double_t LayerThickness = 45.0; // Thickness of one TRD layer in cm + +const Double_t LayerOffset[MaxLayers] = {0., 0., 0., 0., -112., + 0., 0., 0., 5., 0.}; // v13x[4,5] - z offset in addition to LayerThickness +//const Double_t LayerOffset[MaxLayers] = { 0., 0., 0., 0., -115., 0., 0., 0., 5., 0. }; // v13x[4,5] - z offset in addition to LayerThickness +// 140 / 165 / 190 / 215 / 240 - 115 = 125 +//const Double_t LayerOffset[MaxLayers] = { 0., 0., 0., 0., -115., 0., 0., 0., 5., 0. }; // v13x[4,5] - z offset in addition to LayerThickness +// 115 / 140 / 165 / 190 / 215 - 125 = 100 + +// const Double_t LayerOffset[MaxLayers] = { 0., -10., 0., 0., 0., 0., 0., 0., 5., 0. }; // v13x[4,5] - z offset in addition to LayerThickness +// 100 / 125 - 10 = 115 / 140 / 165 / 190 + +//const Double_t LayerOffset[MaxLayers] = { 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. }; // SIS100 - z offset in addition to LayerThickness +//const Double_t LayerOffset[MaxLayers] = { 0., 0., 0., 0., 95., 0., 0., 0., 5., 0. }; // v13n - z offset in addition to LayerThickness + +const Int_t LayerArraySize[3][4] = {{5, 5, 9, 11}, // for layer[1-3][i,o] below + {5, 5, 9, 11}, + {5, 5, 9, 11}}; + + +// ### Layer Type 1 +// v14x - module types in the inner sector of layer type 1 - looking upstream +const Int_t layer1i[5][5] = {{0, 0, 0, 0, 0}, + {0, 0, 0, 0, 0}, + {0, 0, 0, 0, 0}, + // { 0, 0, 101, 0, 0 }, + {0, 0, 0, 0, 0}, + {0, 0, 0, 0, 0}}; + +//const Int_t layer1i[5][5] = { { 323, 323, 321, 321, 321 }, // abc: a module type - b orientation (x90 deg) in odd - c even layers +// { 223, 123, 121, 121, 221 }, +// { 203, 103, 0, 101, 201 }, +// { 203, 103, 101, 101, 201 }, +// { 303, 303, 301, 301, 301 } }; +// number of modules: 24 + +// v14x - module types in the outer sector of layer type 1 - looking upstream +const Int_t layer1o[9][11] = { + {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 821, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, + {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; +//// v14x - module types in the outer sector of layer type 1 - looking upstream +//const Int_t layer1o[9][11]= { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, +// { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, +// { 0, 0, 823, 823, 723, 721, 721, 821, 821, 0, 0 }, +// { 0, 0, 823, 623, 0, 0, 0, 621, 821, 0, 0 }, +// { 0, 0, 703, 603, 0, 0, 0, 601, 701, 0, 0 }, +// { 0, 0, 803, 603, 0, 0, 0, 601, 801, 0, 0 }, +// { 0, 0, 803, 803, 703, 701, 701, 801, 801, 0, 0 }, +// { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, +// { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }; +// number of modules: 26 +// Layer1 = 24 + 26; // v14a + + +// ### Layer Type 2 -> remapped for Buch prototype +// v14x - module types in the inner sector of layer type 2 - looking upstream +// const Int_t layer2i[5][5] = { { 323, 323, 321, 321, 321 }, // abc: a module type - b orientation (x90 deg) in odd - c even layers +// { 223, 123, 121, 121, 221 }, +// { 203, 103, 0, 101, 201 }, +// { 203, 103, 101, 101, 201 }, +// { 303, 303, 301, 301, 301 } }; +const Int_t layer2i[5][5] = {{0}, // abc: a module type - b orientation (x90 deg) in odd - c even layers + {0}, + {0, 0, 900, 0, 0}, + {0}, + {0}}; + +// number of modules: 24 + +// v14x - module types in the outer sector of layer type 2 - looking upstream +// const Int_t layer2o[9][11]= { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, +// { 0, 823, 823, 823, 823, 821, 821, 821, 821, 821, 0 }, +// { 0, 823, 823, 823, 723, 721, 721, 821, 821, 821, 0 }, +// { 0, 823, 723, 623, 0, 0, 0, 621, 721, 821, 0 }, +// { 0, 803, 703, 603, 0, 0, 0, 601, 701, 801, 0 }, +// { 0, 803, 703, 603, 0, 0, 0, 601, 701, 801, 0 }, +// { 0, 803, 803, 803, 703, 701, 701, 801, 801, 801, 0 }, +// { 0, 803, 803, 803, 803, 801, 801, 801, 801, 801, 0 }, +// { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }; +const Int_t layer2o[9][11] = {{0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}, {0}}; +// number of modules: 54 +// Layer2 = 24 + 54; // v14a + + +// ### Layer Type 3 +// v14x - module types in the inner sector of layer type 3 - looking upstream +const Int_t layer3i[5][5] = { + {323, 323, 321, 321, 321}, // abc: a module type - b orientation (x90 deg) in odd - c even layers + {223, 123, 121, 121, 221}, + {203, 103, 0, 101, 201}, + {203, 103, 101, 101, 201}, + {303, 303, 301, 301, 301}}; +// number of modules: 24 + +// v14x - module types in the outer sector of layer type 3 - looking upstream +const Int_t layer3o[9][11] = { + {823, 823, 823, 823, 823, 821, 821, 821, 821, 821, 821}, {823, 823, 823, 823, 823, 821, 821, 821, 821, 821, 821}, + {823, 823, 823, 723, 623, 621, 621, 721, 821, 821, 821}, {823, 823, 723, 623, 0, 0, 0, 621, 721, 821, 821}, + {803, 803, 703, 603, 0, 0, 0, 601, 701, 801, 801}, {803, 803, 703, 603, 0, 0, 0, 601, 701, 801, 801}, + {803, 803, 803, 703, 603, 601, 601, 701, 801, 801, 801}, {803, 803, 803, 803, 803, 801, 801, 801, 801, 801, 801}, + {803, 803, 803, 803, 803, 801, 801, 801, 801, 801, 801}}; +// number of modules: 90 +// Layer2 = 24 + 90; // v14a + + +// Parameters defining the layout of the different detector modules +const Int_t NofModuleTypes = 10; +const Int_t ModuleType[NofModuleTypes] = { + 0, 0, 0, 2, 1, 1, 1, 1, 2, 3}; // 0 = small module, 1 = large module, 2 = mCBM Bucharest prototype + +// FEB inclination angle +const Double_t feb_rotation_angle[NofModuleTypes] = { + 70, 90, 90, 0, 80, 90, 90, 90, 0, 0}; // rotation around x-axis, 0 = vertical, 90 = horizontal +//const Double_t feb_rotation_angle[NofModuleTypes] = { 45, 45, 45, 45, 45, 45, 45, 45 }; // rotation around x-axis, 0 = vertical, 90 = horizontal + +// GBTx ROB definitions +const Int_t RobsPerModule[NofModuleTypes] = {3, 2, 1, 6, 2, 2, 1, 1, 30, 1}; // number of GBTx ROBs on module +const Int_t GbtxPerRob[NofModuleTypes] = {105, 105, 105, 103, 107, + 105, 105, 103, 103, 103}; // number of GBTx ASICs on ROB + +const Int_t GbtxPerModule[NofModuleTypes] = {15, 10, 5, 18, 0, + 10, 5, 3, 18, 18}; // for .geo.info - TODO: merge with above GbtxPerRob +const Int_t RobTypeOnModule[NofModuleTypes] = { + 555, 55, 5, 333333, 0, 55, 5, 3, 333333, 333333}; // for .geo.info - TODO: merge with above GbtxPerRob + +//const Int_t RobsPerModule[NofModuleTypes] = { 2, 2, 1, 1, 2, 2, 1, 1 }; // number of GBTx ROBs on module +//const Int_t GbtxPerRob[NofModuleTypes] = {107,105,105,103,107,105,105,103 }; // number of GBTx ASICs on ROB +//const Int_t GbtxPerModule[NofModuleTypes] = { 14, 8, 5, 0, 0, 10, 5, 3 }; // for .geo.info - TODO: merge with above GbtxPerRob +//const Int_t RobTypeOnModule[NofModuleTypes] = { 77, 53, 5, 0, 0, 55, 5, 3 }; // for .geo.info - TODO: merge with above GbtxPerRob + +// super density for type 1 modules - 2017 - 540 mm +const Int_t FebsPerModule[NofModuleTypes] = {9, 5, 6, 18, 12, 8, 4, 3, 18, 18}; // number of FEBs on backside +//const Int_t FebsPerModule[NofModuleTypes] = { 9, 6, 3, 4, 12, 8, 4, 2 }; // number of FEBs on backside +const Int_t AsicsPerFeb[NofModuleTypes] = { + 210, 210, 210, 410, 108, 108, 108, 108, 410, 410}; // %100 gives number of ASICs on FEB, /100 gives grouping +//// ultimate density - 540 mm +//const Int_t FebsPerModule[NofModuleTypes] = { 6, 5, 6, 4, 12, 8, 4, 3 }; // number of FEBs on backside - reduced FEBs (64 ch ASICs) +//const Int_t AsicsPerFeb[NofModuleTypes] = {315,210,105,105,108,108,108,108 }; // %100 gives number of ASICs on FEB, /100 gives grouping +////const Int_t FebsPerModule[NofModuleTypes] = { 6, 5, 3, 2, 6, 3, 4, 3 }; // min number of FEBs // number of FEBs on backside - reduced FEBs (64 ch ASICs) +////const Int_t AsicsPerFeb[NofModuleTypes] = {315,210,210,210,216,216,108,108 }; // %100 gives number of ASICs on FEB, /100 gives grouping +////const Int_t AsicsPerFeb[NofModuleTypes] = {216,210,210,210,216,216,108,108 }; // %100 gives number of ASICs on FEB, /100 gives grouping +// +////// super density - 540 mm +//const Int_t FebsPerModule[NofModuleTypes] = { 9, 5, 6, 4, 12, 6, 4, 3 }; // light // number of FEBs on backside - reduced FEBs (64 ch ASICs) +//const Int_t AsicsPerFeb[NofModuleTypes] = {210,210,105,105,108,108,108,108 }; // %100 gives number of ASICs on FEB, /100 gives grouping +// +//// normal density - 540 mm +//const Int_t FebsPerModule[NofModuleTypes] = { 18, 10, 6, 4, 12, 6, 4, 3 }; // number of FEBs on backside (linked to pad layout) - mod4 = mod3, therefore same +//const Int_t AsicsPerFeb[NofModuleTypes] = {105,105,105,105,108,108,108,108 }; // %100 gives number of ASICs on FEB, /100 gives grouping + +// ultimate density - 570 mm +//const Int_t FebsPerModule[NofModuleTypes] = { 6, 5, 3, 2, 5, 3, 2, 1 }; // min number of FEBs // number of FEBs on backside - reduced FEBs (64 ch ASICs) +//const Int_t AsicsPerFeb[NofModuleTypes] = {216,210,210,210,216,216,216,216 }; // %100 gives number of ASICs on FEB, /100 gives grouping +// +//const Int_t FebsPerModule[NofModuleTypes] = { 6, 5, 3, 3, 10, 5, 3, 3 }; // min (6) module types // number of FEBs on backside - reduced FEBs (64 ch ASICs) +//const Int_t AsicsPerFeb[NofModuleTypes] = {216,210,210,210,108,108,108,108 }; // %100 gives number of ASICs on FEB, /100 gives grouping +//// super density - 570 mm +//const Int_t FebsPerModule[NofModuleTypes] = { 10, 5, 5, 5, 12, 6, 4, 3 }; // light // number of FEBs on backside - reduced FEBs (64 ch ASICs) +//const Int_t AsicsPerFeb[NofModuleTypes] = {210,210,105,105,108,108,108,108 }; // %100 gives number of ASICs on FEB, /100 gives grouping +// +//// normal density - 570 mm +//const Int_t FebsPerModule[NofModuleTypes] = { 19, 10, 5, 5, 12, 6, 4, 3 }; // number of FEBs on backside (linked to pad layout) - mod4 = mod3, therefore same +//const Int_t AsicsPerFeb[NofModuleTypes] = {105,105,105,105,108,108,108,108 }; // %100 gives number of ASICs on FEB, /100 gives grouping + + +/* TODO: activate connector grouping info below +// ultimate - grouping of pads to connectors +const Int_t RowsPerConnector[NofModuleTypes] = { 6, 4, 2, 2, 2, 2, 2, 2 }; +const Int_t ColsPerConnector[NofModuleTypes] = { 16, 16, 16, 16, 16, 16, 16, 16 }; +// super - grouping of pads to connectors +const Int_t RowsPerConnector[NofModuleTypes] = { 4, 4, 2, 2, 2, 2, 2, 2 }; +const Int_t ColsPerConnector[NofModuleTypes] = { 16, 16, 16, 16, 16, 16, 16, 16 }; +// normal - grouping of pads to connectors +const Int_t RowsPerConnector[NofModuleTypes] = { 2, 2, 2, 2, 2, 2, 2, 2 }; +const Int_t ColsPerConnector[NofModuleTypes] = { 16, 16, 16, 16, 16, 16, 16, 16 }; +*/ + + +const Double_t feb_z_offset = 0.1; // 1 mm - offset in z of FEBs to backpanel +const Double_t asic_offset = 0.1; // 1 mm - offset of ASICs to FEBs to avoid overlaps + +// ASIC parameters +Double_t asic_distance; + +//const Double_t FrameWidth[2] = { 1.5, 2.0 }; // Width of detector frames in cm +const Double_t FrameWidth[4] = {1.5, 1.5, 2.5, 1.5}; // Width of detector frames in cm +// mini - production +const Double_t DetectorSizeX[4] = {57., 95., 59.0, 23 + 3.}; // => 54 x 54 cm2 & 91 x 91 cm2 active area +const Double_t DetectorSizeY[4] = {57., 95., 60.8, 8.16 + 3}; // quadratic modules +//// default +//const Double_t DetectorSizeX[2] = { 60., 100.}; // => 57 x 57 cm2 & 96 x 96 cm2 active area +//const Double_t DetectorSizeY[2] = { 60., 100.}; // quadratic modules + +// Parameters tor the lattice grid reinforcing the entrance window +//const Double_t lattice_o_width[2] = { 1.5, 2.0 }; // Width of outer lattice frame in cm +const Double_t lattice_o_width[2] = {1.5, 1.5}; // Width of outer lattice frame in cm +const Double_t lattice_i_width[2] = {0.2, 0.2}; // { 0.4, 0.4 }; // Width of inner lattice frame in cm +// Thickness (in z) of lattice frames in cm - see below + +// statistics +Int_t ModuleStats[MaxLayers][NofModuleTypes] = {0}; + +// z - geometry of TRD modules +const Double_t radiator_thickness = 0.0; // 35 cm thickness of radiator +//const Double_t radiator_thickness = 30.0; // 30 cm thickness of radiator + shift pad plane to integer multiple of 1 mm +const Double_t radiator_position = -LayerThickness / 2. + radiator_thickness / 2.; + +//const Double_t lattice_thickness = 1.0; // 1.0; // 10 mm thick lattice frames +const Double_t lattice_thickness = 1.0 - 0.0025; // 0.9975; // 1.0; // 10 mm thick lattice frames +const Double_t lattice_position = radiator_position + radiator_thickness / 2. + lattice_thickness / 2.; + +const Double_t kapton_thickness = 0.0025; // 25 micron thickness of kapton +const Double_t kapton_position = lattice_position + lattice_thickness / 2. + kapton_thickness / 2.; + +const Double_t gas_thickness = 1.2; // 12 mm thickness of gas +const Double_t gas_position = kapton_position + kapton_thickness / 2. + gas_thickness / 2.; + +// frame thickness +const Double_t frame_thickness = gas_thickness; // frame covers gas volume: from kapton foil to pad plane +const Double_t frame_position = + -LayerThickness / 2. + radiator_thickness + lattice_thickness + kapton_thickness + frame_thickness / 2.; + +// pad plane +const Double_t padcopper_thickness = 0.0025; // 25 micron thickness of copper pads +const Double_t padcopper_position = gas_position + gas_thickness / 2. + padcopper_thickness / 2.; + +const Double_t padplane_thickness = 0.0360; // 360 micron thickness of padplane +const Double_t padplane_position = padcopper_position + padcopper_thickness / 2. + padplane_thickness / 2.; + +// backpanel components +const Double_t carbon_thickness = 0.0190 * 2; // use 2 layers!! // 190 micron thickness for 1 layer of carbon fibers +const Double_t honeycomb_thickness = 2.3 - kapton_thickness - padcopper_thickness - padplane_thickness + - carbon_thickness; // ~ 2.3 mm thickness of honeycomb +const Double_t honeycomb_position = padplane_position + padplane_thickness / 2. + honeycomb_thickness / 2.; +const Double_t carbon_position = honeycomb_position + honeycomb_thickness / 2. + carbon_thickness / 2.; + +// aluminium thickness +const Double_t aluminium_thickness = 0.4; // crossbar of 1 x 1 cm at every module edge +const Double_t aluminium_width = 1.0; // crossbar of 1 x 1 cm at every module edge +const Double_t aluminium_position = carbon_position + carbon_thickness / 2. + aluminium_thickness / 2.; + +// power bus bars +const Double_t powerbar_thickness = 1.0; // 1 cm in z direction +const Double_t powerbar_width = 2.0; // 2 cm in x/y direction +const Double_t powerbar_position = aluminium_position + aluminium_thickness / 2. + powerbar_thickness / 2.; + +// gibbet support +const Double_t gibbet_thickness = 10.0; // 10 cm in z direction +const Double_t gibbet_width = 10.0; // 10 cm in x/y direction +const Double_t gibbet_position = aluminium_position + aluminium_thickness / 2. + gibbet_thickness / 2.; + +// module rails +const Double_t rail_thickness = 5.0; // 5 cm in z direction +const Double_t rail_width = 3.0; // 3 cm in x/y direction +const Double_t rail_position = aluminium_position + aluminium_thickness / 2. + rail_thickness / 2.; + +// readout boards +//const Double_t feb_width = 10.0; // width of FEBs in cm +const Double_t feb_width = 8.5; // width of FEBs in cm +const Double_t feb_thickness = 0.25; // light // 2.5 mm thickness of FEBs +const Double_t febvolume_position = aluminium_position + aluminium_thickness / 2. + feb_width / 2.; + +// ASIC parameters +const Double_t asic_thickness = 0.25; // 2.5 mm asic_thickness +const Double_t asic_width = 3.0; // 2.0; 1.0; // 1 cm + + +// -------------- BUCHAREST PROTOTYPE SPECIFICS ---------------------------------- +// Frontpanel components +const Double_t carbonBu_thickness = 0.03; // 300 micron thickness for 1 layer of carbon fibers +const Double_t honeycombBu_thickness = 0.94; // 9 mm thickness of honeycomb +const Double_t WIN_Frame_thickness = 0.6; // entrance window framing 6x12 mm2 +//const Double_t carbonBu0_position = radiator_position + radiator_thickness / 2. + carbonBu_thickness / 2.; +const Double_t honeycombBu0_position = radiator_position + radiator_thickness / 2. + honeycombBu_thickness / 2.; +const Double_t carbonBu1_position = honeycombBu0_position + honeycombBu_thickness / 2. + carbonBu_thickness / 2.; +// Active volume +const Double_t gasBu_position = carbonBu1_position + carbonBu_thickness / 2. + gas_thickness / 2.; +// Pad plane +const Double_t padcopperBu_position = gasBu_position + gas_thickness / 2. + padcopper_thickness / 2.; +const Double_t padplaneBu_position = padcopperBu_position + padcopper_thickness / 2. + padplane_thickness / 2.; +// Backpanel components +const Double_t honeycombBu1_position = padplaneBu_position + padplane_thickness / 2. + honeycombBu_thickness / 2.; +// PCB +const Double_t glassFibre_thickness = 0.0270; // 300 microns overall PCB thickness +const Double_t cuCoating_thickness = 0.0030; +const Double_t glassFibre_position = honeycombBu1_position + honeycombBu_thickness / 2. + glassFibre_thickness / 2.; +const Double_t cuCoating_position = glassFibre_position + glassFibre_thickness / 2. + cuCoating_thickness / 2.; +//Frame around entrance window, active volume and exit window +const Double_t frameBu_thickness = 2 * carbonBu_thickness + honeycombBu_thickness + gas_thickness + padcopper_thickness + + padplane_thickness + honeycombBu_thickness + glassFibre_thickness + + cuCoating_thickness; +const Double_t frameBu_position = radiator_position + radiator_thickness / 2. + frameBu_thickness / 2.; +// ROB FASP +const Double_t febFASP_zspace = 1.5; // gap size between boards +const Double_t febFASP_width = 5.5; // width of FASP FEBs in cm +const Double_t febFASP_position = cuCoating_position + febFASP_width / 2. + 1.5; +const Double_t febFASP_thickness = feb_thickness; + +// FASP-ASIC parameters +const Double_t fasp_size[2] = {2, 2.5}; // FASP package size 2x3 cm2 +const Double_t fasp_xoffset = 1.35; // ASIC offset from ROC middle (horizontally) +const Double_t fasp_yoffset = 0.6; // ASIC offset from DET connector (vertical) +// GETS2C-ROB3 connector boord parameters +const Double_t robConn_size_x = 15.0; +const Double_t robConn_size_y = 6.0; +const Double_t robConn_xoffset = 6.0; +const Double_t robConn_FMCwidth = 1.5; // width of a MF FMC connector +const Double_t robConn_FMClength = 6.5; // length of a MF FMC connector +const Double_t robConn_FMCheight = 1.5; // height of a MF FMC connector + +// C-ROB3 parameters : GBTx ROBs +const Double_t rob_size_x = 20.0; // 13.0; // 130 mm +const Double_t rob_size_y = 9.0; // 4.5; // 45 mm +const Double_t rob_yoffset = 0.3; // offset wrt detector frame (on the detector plane) +const Double_t rob_zoffset = -7.5; // offset wrt entrace plane - center board +const Double_t rob_thickness = feb_thickness; +// GBTX parameters +const Double_t gbtx_thickness = 0.25; // 2.5 mm +const Double_t gbtx_width = 3.0; // 2.0; 1.0; // 1 cm +const Double_t gbtx_distance = 0.4; + + +// Names of the different used materials which are used to build the modules +// The materials are defined in the global media.geo file +const TString KeepingVolumeMedium = "air"; +const TString RadiatorVolumeMedium = "TRDpefoam20"; +const TString LatticeVolumeMedium = "TRDG10"; +const TString KaptonVolumeMedium = "TRDkapton"; +const TString GasVolumeMedium = "TRDgas"; +const TString PadCopperVolumeMedium = "TRDcopper"; +const TString PadPcbVolumeMedium = "TRDG10"; // todo - put correct FEB material here +const TString HoneycombVolumeMedium = "TRDaramide"; +const TString CarbonVolumeMedium = "TRDcarbon"; +const TString FebVolumeMedium = "TRDG10"; // todo - put correct FEB material here +const TString AsicVolumeMedium = "air"; // todo - put correct ASIC material here +const TString TextVolumeMedium = "air"; // leave as air +const TString FrameVolumeMedium = "TRDG10"; +const TString PowerBusVolumeMedium = "TRDcopper"; // power bus bars +const TString AluLegdeVolumeMedium = "aluminium"; // aluminium frame around backpanel +const TString AluminiumVolumeMedium = "aluminium"; +const TString Kanya10x10sVolumeMedium = "KANYAProfile10x10Strong"; +const TString Kanya10x10nVolumeMedium = "KANYAProfile10x10Normal"; +const TString Kanya03x05nVolumeMedium = "KANYAProfile3x5Normal"; +//const TString MylarVolumeMedium = "mylar"; +//const TString RadiatorVolumeMedium = "polypropylene"; +//const TString ElectronicsVolumeMedium = "goldcoatedcopper"; + +// some global variables +TGeoManager* gGeoMan = NULL; // Pointer to TGeoManager instance +TGeoVolume* gModules[NofModuleTypes]; // Global storage for module types + +// Forward declarations +void create_materials_from_media_file(); +TGeoVolume* create_trd_module_type(Int_t moduleType); +TGeoVolume* create_trd2d_module_type(Int_t moduleType); +void create_detector_layers(Int_t layer); +void create_gibbet_support(); +void create_power_bars_vertical(); +void create_power_bars_horizontal(); +void create_xtru_supports(); +void create_box_supports(); +void add_trd_labels(TGeoVolume*, TGeoVolume*, TGeoVolume*); +void create_mag_field_vector(); +void dump_info_file(); +void dump_digi_file(); + + +void Create_TRD_Geometry_v21a() +{ + + // declare TRD layer layout + if (setupid > 2) + for (Int_t i = 0; i < MaxLayers; i++) + ShowLayer[i] = 1; // show all layers + + // Load needed material definition from media.geo file + create_materials_from_media_file(); + + // Position the layers in z + for (Int_t iLayer = 1; iLayer < MaxLayers; iLayer++) + LayerPosition[iLayer] = + LayerPosition[iLayer - 1] + LayerThickness + LayerOffset[iLayer]; // add offset for extra gaps + + // Get the GeoManager for later usage + gGeoMan = (TGeoManager*) gROOT->FindObject("FAIRGeom"); + gGeoMan->SetVisLevel(10); + + // Create the top volume + TGeoBBox* topbox = new TGeoBBox("", 1000., 1000., 2000.); + TGeoVolume* top = new TGeoVolume("top", topbox, gGeoMan->GetMedium("air")); + gGeoMan->SetTopVolume(top); + + TGeoVolume* trd = new TGeoVolumeAssembly(geoVersion); + top->AddNode(trd, 1); + + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + Int_t moduleType = iModule + 1; + gModules[iModule] = (iModule >= 8 ? create_trd2d_module_type(moduleType) : create_trd_module_type(moduleType)); + } + + Int_t nLayer = 0; // active layer counter + for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++) { + // if ((iLayer != 0) && (iLayer != 3)) continue; // first layer only - comment later on + // if (iLayer != 0) continue; // first layer only - comment later on + if (ShowLayer[iLayer]) { + PlaneId[iLayer] = ++nLayer; + create_detector_layers(iLayer); + // printf("calling layer %2d\n",iLayer); + } + } + + // TODO: remove or comment out + // test PlaneId + printf("generated TRD layers: "); + for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++) + if (ShowLayer[iLayer]) printf(" %2d", PlaneId[iLayer]); + printf("\n"); + + if (IncludeSupports) { create_box_supports(); } + + if (IncludeGibbet) { create_gibbet_support(); } + + if (IncludePowerbars) { + create_power_bars_vertical(); + create_power_bars_horizontal(); + } + + if (IncludeFieldVector) create_mag_field_vector(); + + gGeoMan->CloseGeometry(); + // gGeoMan->CheckOverlaps(0.001); + // gGeoMan->PrintOverlaps(); + gGeoMan->Test(); + + trd->Export(FileNameSim); // an alternative way of writing the trd volume + + TFile* outfile = new TFile(FileNameSim, "UPDATE"); + // TGeoTranslation* trd_placement = new TGeoTranslation("trd_trans", 0., 0., 0.); + // TGeoTranslation* trd_placement = new TGeoTranslation("trd_trans", 0., 0., zfront[setupid]); + TGeoTranslation* trd_placement = new TGeoTranslation("trd_trans", -7., 0., zfront[setupid]); + trd_placement->Write(); + outfile->Close(); + + outfile = new TFile(FileNameGeo, "RECREATE"); + gGeoMan->Write(); // use this is you want GeoManager format in the output + outfile->Close(); + + dump_info_file(); + dump_digi_file(); + + top->Draw("ogl"); + + //top->Raytrace(); + + // cout << "Press Return to exit" << endl; + // cin.get(); + // exit(); +} + + +//============================================================== +void dump_digi_file() +{ + TDatime datetime; // used to get timestamp + + const Double_t ActiveAreaX[4] = {DetectorSizeX[0] - 2 * FrameWidth[0], DetectorSizeX[1] - 2 * FrameWidth[1], + DetectorSizeX[2] - 2 * FrameWidth[2], DetectorSizeX[3] - 2 * FrameWidth[3]}; + const Double_t ActiveAreaY[4] = {DetectorSizeY[0] - 2 * FrameWidth[0], DetectorSizeY[1] - 2 * FrameWidth[1], + DetectorSizeY[2] - 2 * FrameWidth[2], DetectorSizeY[3] - 2 * FrameWidth[3]}; + const Int_t NofSectors = 3; + const Int_t NofPadsInRow[4] = {80, 128, 72, 32}; // number of pads in rows + Int_t nrow = 0; // number of rows in module + + const Double_t PadHeightInSector[NofModuleTypes][NofSectors] = // pad height + {{1.50, 1.50, 1.50}, // module type 1 - 1.01 mm2 + {2.25, 2.25, 2.25}, // module type 2 - 1.52 mm2 + // { 2.75, 2.50, 2.75 }, // module type 2 - 1.86 mm2 + {4.50, 4.50, 4.50}, // module type 3 - 3.04 mm2 + // { 2.75, 6.75, 6.75 }, // module type 4 - 4.56 mm2 + {2.79, 2.79, 2.79}, // module type 4 - triangular pads H=27.7+0.2 mm, W=7.3+0.2 mm + + {3.75, 4.00, 3.75}, // module type 5 - 2.84 mm2 + {5.75, 5.75, 5.75}, // module type 6 - 4.13 mm2 + {11.50, 11.50, 11.50}, // module type 7 - 8.26 mm2 + {15.25, 15.50, 15.25}, // module type 8 - 11.14 mm2 + // TRD2D with triangular pads + {2.79, 2.79, 2.79}, // module type 9 - H=27.7+0.2 mm, W=7.3+0.2 mm + {2.72, 2.72, 2.72}}; // module type 10 - H=27.7+0.2 mm, W=7.3+0.2 mm + // { 23.00, 23.00, 23.00 } }; // module type 8 - 16.52 mm2 + // { 7.50, 7.75, 7.50 }, // module type 6 - 5.51 mm2 + // { 5.50, 5.75, 5.50 }, // module type 6 - 4.09 mm2 + // { 11.25, 11.50, 11.25 }, // module type 7 - 8.18 mm2 + + const Int_t NofRowsInSector[NofModuleTypes][NofSectors] = // number of rows per sector + {{12, 12, 12}, // module type 1 + {8, 8, 8}, // module type 2 + // { 8, 4, 8 }, // module type 2 + {4, 4, 4}, // module type 3 + // { 2, 4, 2 }, // module type 4 + {2, 16, 2}, // module type 4 + + {8, 8, 8}, // module type 5 + {4, 8, 4}, // module type 6 + {2, 4, 2}, // module type 7 + {2, 2, 2}, // module type 8 + // { 1, 2, 1 } }; // module type 8 + // { 10, 4, 10 }, // module type 5 + // { 4, 4, 4 }, // module type 6 + // { 2, 12, 2 }, // module type 6 + // { 2, 4, 2 }, // module type 7 + // { 2, 2, 2 } }; // module type 8 + {1, 18, 1}, // module type 9 + {1, 1, 1}}; // module type 10 + + Double_t HeightOfSector[NofModuleTypes][NofSectors]; + Double_t PadWidth[NofModuleTypes]; + + // calculate pad width + for (Int_t im = 0; im < NofModuleTypes; im++) + PadWidth[im] = ActiveAreaX[ModuleType[im]] / NofPadsInRow[ModuleType[im]]; + + // calculate height of sectors + for (Int_t im = 0; im < NofModuleTypes; im++) + for (Int_t is = 0; is < NofSectors; is++) + HeightOfSector[im][is] = NofRowsInSector[im][is] * PadHeightInSector[im][is]; + + // check, if the entire module size is covered by pads + for (Int_t im = 0; im < NofModuleTypes; im++) { + if (im != 3 + && ActiveAreaY[ModuleType[im]] - (HeightOfSector[im][0] + HeightOfSector[im][1] + HeightOfSector[im][2]) != 0) { + printf("WARNING: sector size does not add up to module size for module " + "type %d\n", + im + 1); + printf("%.2f = %.2f + %.2f + %.2f\n", ActiveAreaY[ModuleType[im]], HeightOfSector[im][0], HeightOfSector[im][1], + HeightOfSector[im][2]); + //exit(1); + } + } + //============================================================== + + printf("writing trd pad information file: %s\n", FileNamePads.Data()); + + FILE* ifile; + ifile = fopen(FileNamePads.Data(), "w"); + + if (ifile == NULL) { + printf("error opening %s\n", FileNamePads.Data()); + exit(1); + } + + fprintf(ifile, "//\n"); + fprintf(ifile, "// TRD pad layout for geometry %s\n", tagVersion.Data()); + fprintf(ifile, "//\n"); + fprintf(ifile, "// automatically generated by Create_TRD_Geometry_%s%s.C\n", tagVersion.Data(), subVersion.Data()); + fprintf(ifile, "// created %d\n", datetime.GetDate()); + fprintf(ifile, "//\n"); + + fprintf(ifile, "\n"); + fprintf(ifile, "#ifndef CBMTRDPADS_H\n"); + fprintf(ifile, "#define CBMTRDPADS_H\n"); + fprintf(ifile, "\n"); + fprintf(ifile, "Int_t fst1_sect_count = 3;\n"); + fprintf(ifile, "// array of pad geometries in the TRD (trd1mod[1-8])\n"); + fprintf(ifile, "// 8 modules // 3 sectors // 4 values \n"); + fprintf(ifile, "Float_t fst1_pad_type[8][3][4] = \n"); + //fprintf(ifile,"Double_t fst1_pad_type[8][3][4] = \n"); + fprintf(ifile, " \n"); + + for (Int_t im = 0; im < NofModuleTypes; im++) { + if (im + 1 == 5) fprintf(ifile, "//---\n\n"); + fprintf(ifile, "// module type %d\n", im + 1); + + // number of pads + nrow = 0; // reset number of pad rows to 0 + for (Int_t is = 0; is < NofSectors; is++) + nrow += HeightOfSector[im][is] / PadHeightInSector[im][is]; // add number of rows in this sector + fprintf(ifile, "// number of pads: %3d x %2d = %4d\n", NofPadsInRow[ModuleType[im]], nrow, + NofPadsInRow[ModuleType[im]] * nrow); + + // pad size + fprintf(ifile, "// pad size sector 1: %5.2f cm x %5.2f cm = %5.2f cm2\n", PadWidth[im], PadHeightInSector[im][1], + PadWidth[im] * PadHeightInSector[im][1]); + fprintf(ifile, "// pad size sector 0: %5.2f cm x %5.2f cm = %5.2f cm2\n", PadWidth[im], PadHeightInSector[im][0], + PadWidth[im] * PadHeightInSector[im][0]); + + for (Int_t is = 0; is < NofSectors; is++) { + if ((im == 0) && (is == 0)) fprintf(ifile, " { { "); + else if (is == 0) + fprintf(ifile, " { "); + else + fprintf(ifile, " "); + + fprintf(ifile, "{ %.1f, %5.2f, %.1f/%3d, %5.2f }", ActiveAreaX[ModuleType[im]], HeightOfSector[im][is], + ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][is]); + + if ((im == NofModuleTypes - 1) && (is == 2)) fprintf(ifile, " } };"); + else if (is == 2) + fprintf(ifile, " },"); + else + fprintf(ifile, ","); + + fprintf(ifile, "\n"); + } + + fprintf(ifile, "\n"); + } + + fprintf(ifile, "#endif\n"); + + // Int_t im = 0; + // fprintf(ifile,"// module type %d \n", im+1); + // fprintf(ifile," { { { %.1f, %5.2f, %.1f/%3d, %5.2f }, \n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][0], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][0]); + // fprintf(ifile," { %.1f, %5.2f, %.1f/%3d, %5.2f }, \n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][1], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][1]); + // fprintf(ifile," { %.1f, %5.2f, %.1f/%3d, %5.2f } }, \n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][2], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][2]); + // fprintf(ifile,"\n"); + // + // for (Int_t im = 1; im < NofModuleTypes-1; im++) + // { + // fprintf(ifile,"// module type %d \n", im+1); + // fprintf(ifile," { { %.1f, %5.2f, %.1f/%3d, %5.2f }, \n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][0], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][0]); + // fprintf(ifile," { %.1f, %5.2f, %.1f/%3d, %5.2f }, \n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][1], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][1]); + // fprintf(ifile," { %.1f, %5.2f, %.1f/%3d, %5.2f } }, \n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][2], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][2]); + // fprintf(ifile,"\n"); + // } + // + // Int_t im = 7; + // fprintf(ifile,"// module type %d \n", im+1); + // fprintf(ifile," { { %.1f, %5.2f, %.1f/%3d, %5.2f }, \n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][0], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][0]); + // fprintf(ifile," { %.1f, %5.2f, %.1f/%3d, %5.2f }, \n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][1], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][1]); + // fprintf(ifile," { %.1f, %5.2f, %.1f/%3d, %5.2f } } };\n", ActiveAreaX[ModuleType[im]], HeightOfSector[im][2], ActiveAreaX[ModuleType[im]], NofPadsInRow[ModuleType[im]], PadHeightInSector[im][2]); + // fprintf(ifile,"\n"); + + fclose(ifile); +} + + +void dump_info_file() +{ + TDatime datetime; // used to get timestamp + + Double_t z_first_layer = 2000; // z position of first layer (front) + Double_t z_last_layer = 0; // z position of last layer (front) + + Double_t xangle; // horizontal angle + Double_t yangle; // vertical angle + + Double_t total_surface = 0; // total surface + Double_t total_actarea = 0; // total active area + + Int_t channels_per_module[NofModuleTypes + 1] = {0}; // number of channels per module + Int_t channels_per_feb[NofModuleTypes + 1] = {0}; // number of channels per feb + Int_t asics_per_module[NofModuleTypes + 1] = {0}; // number of asics per module + + Int_t total_modules[NofModuleTypes + 1] = {0}; // total number of modules + Int_t total_febs[NofModuleTypes + 1] = {0}; // total number of febs + Int_t total_asics[NofModuleTypes + 1] = {0}; // total number of asics + Int_t total_gbtx[NofModuleTypes + 1] = {0}; // total number of gbtx + Int_t total_rob3[NofModuleTypes + 1] = {0}; // total number of gbtx rob3 + Int_t total_rob5[NofModuleTypes + 1] = {0}; // total number of gbtx rob5 + Int_t total_rob7[NofModuleTypes + 1] = {0}; // total number of gbtx rob7 + Int_t total_channels[NofModuleTypes + 1] = {0}; // total number of channels + + Int_t total_channels_u = 0; // total number of ultimate channels + Int_t total_channels_s = 0; // total number of super channels + Int_t total_channels_r = 0; // total number of regular channels + + printf("writing summary information file: %s\n", FileNameInfo.Data()); + + FILE* ifile; + ifile = fopen(FileNameInfo.Data(), "w"); + + if (ifile == NULL) { + printf("error opening %s\n", FileNameInfo.Data()); + exit(1); + } + + fprintf(ifile, "#\n## %s information file\n#\n\n", geoVersion.Data()); + + fprintf(ifile, "# created %d\n\n", datetime.GetDate()); + + // determine first and last TRD layer + for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++) { + if (ShowLayer[iLayer]) { + if (z_first_layer > LayerPosition[iLayer]) z_first_layer = LayerPosition[iLayer]; + if (z_last_layer < LayerPosition[iLayer]) z_last_layer = LayerPosition[iLayer]; + } + } + + fprintf(ifile, "# envelope\n"); + // Show extension of TRD + fprintf(ifile, "%4f cm start of TRD (z)\n", z_first_layer); + fprintf(ifile, "%4f cm end of TRD (z)\n", z_last_layer + LayerThickness); + fprintf(ifile, "\n"); + + // Layer thickness + fprintf(ifile, "# thickness\n"); + fprintf(ifile, "%4f cm per single layer (z)\n", LayerThickness); + fprintf(ifile, "\n"); + + // Show extra gaps + fprintf(ifile, "# extra gaps\n "); + for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++) + if (ShowLayer[iLayer]) fprintf(ifile, "%3f ", LayerOffset[iLayer]); + fprintf(ifile, " extra gaps in z (cm)\n"); + fprintf(ifile, "\n"); + + // Show layer flags + fprintf(ifile, "# generated TRD layers\n "); + for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++) + if (ShowLayer[iLayer]) fprintf(ifile, "%2d ", PlaneId[iLayer]); + fprintf(ifile, " planeID\n"); + fprintf(ifile, "\n"); + + // Dimensions in x + fprintf(ifile, "# dimensions in x\n"); + for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++) + if (ShowLayer[iLayer]) { + if (PlaneId[iLayer] <= 5) { + Int_t type = LayerType[iLayer] / 10; + fprintf(ifile, "%5f cm to %5f cm x-dimension of layer %2d\n", -3.5 * DetectorSizeX[type], + 3.5 * DetectorSizeX[type], PlaneId[iLayer]); + } + else { + if (PlaneId[iLayer] < 9) + fprintf(ifile, "%5f cm to %5f cm x-dimension of layer %2d\n", -4.5 * DetectorSizeX[1], 4.5 * DetectorSizeX[1], + PlaneId[iLayer]); + else + fprintf(ifile, "%5f cm to %5f cm x-dimension of layer %2d\n", -5.5 * DetectorSizeX[1], 5.5 * DetectorSizeX[1], + PlaneId[iLayer]); + } + } + fprintf(ifile, "\n"); + + // Dimensions in y + fprintf(ifile, "# dimensions in y\n"); + for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++) + if (ShowLayer[iLayer]) { + if (PlaneId[iLayer] <= 5) { + Int_t type = LayerType[iLayer] / 10; + fprintf(ifile, "%5f cm to %5f cm y-dimension of layer %2d\n", -2.5 * DetectorSizeY[type], + 2.5 * DetectorSizeY[type], PlaneId[iLayer]); + } + else { + if (PlaneId[iLayer] < 9) + fprintf(ifile, "%5f cm to %5f cm y-dimension of layer %2d\n", -3.5 * DetectorSizeY[1], 3.5 * DetectorSizeY[1], + PlaneId[iLayer]); + else + fprintf(ifile, "%5f cm to %5f cm y-dimension of layer %2d\n", -4.5 * DetectorSizeY[1], 4.5 * DetectorSizeY[1], + PlaneId[iLayer]); + } + } + fprintf(ifile, "\n"); + + // Show layer positions + fprintf(ifile, "# z-positions of layer front\n"); + for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++) { + if (ShowLayer[iLayer]) fprintf(ifile, "%5f cm z-position of layer %2d\n", LayerPosition[iLayer], PlaneId[iLayer]); + } + fprintf(ifile, "\n"); + + // flags + fprintf(ifile, "# flags\n"); + + fprintf(ifile, "support structure is : "); + if (!IncludeSupports) fprintf(ifile, "NOT "); + fprintf(ifile, "included\n"); + + fprintf(ifile, "radiator is : "); + if (!IncludeRadiator) fprintf(ifile, "NOT "); + fprintf(ifile, "included\n"); + + fprintf(ifile, "lattice grid is : "); + if (!IncludeLattice) fprintf(ifile, "NOT "); + fprintf(ifile, "included\n"); + + fprintf(ifile, "kapton window is : "); + if (!IncludeKaptonFoil) fprintf(ifile, "NOT "); + fprintf(ifile, "included\n"); + + fprintf(ifile, "gas frame is : "); + if (!IncludeGasFrame) fprintf(ifile, "NOT "); + fprintf(ifile, "included\n"); + + fprintf(ifile, "padplane is : "); + if (!IncludePadplane) fprintf(ifile, "NOT "); + fprintf(ifile, "included\n"); + + fprintf(ifile, "backpanel is : "); + if (!IncludeBackpanel) fprintf(ifile, "NOT "); + fprintf(ifile, "included\n"); + + fprintf(ifile, "Aluminium ledge is : "); + if (!IncludeAluLedge) fprintf(ifile, "NOT "); + fprintf(ifile, "included\n"); + + fprintf(ifile, "Gibbet support is : "); + if (!IncludeGibbet) fprintf(ifile, "NOT "); + fprintf(ifile, "included\n"); + + fprintf(ifile, "Power bus bars are : "); + if (!IncludePowerbars) fprintf(ifile, "NOT "); + fprintf(ifile, "included\n"); + + fprintf(ifile, "asics are : "); + if (!IncludeAsics) fprintf(ifile, "NOT "); + fprintf(ifile, "included\n"); + + fprintf(ifile, "front-end boards are : "); + if (!IncludeFebs) fprintf(ifile, "NOT "); + fprintf(ifile, "included\n"); + + fprintf(ifile, "GBTX readout boards are : "); + if (!IncludeRobs) fprintf(ifile, "NOT "); + fprintf(ifile, "included\n"); + + fprintf(ifile, "\n"); + + + // module statistics + // fprintf(ifile,"#\n## modules\n#\n\n"); + // fprintf(ifile,"number of modules per type and layer:\n"); + fprintf(ifile, "# modules\n"); + + for (Int_t iModule = 1; iModule <= NofModuleTypes; iModule++) + fprintf(ifile, " mod%1d", iModule); + fprintf(ifile, " total"); + + fprintf(ifile, "\n------------------------------------------------------------------" + "---------------\n"); + for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++) + if (ShowLayer[iLayer]) { + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + fprintf(ifile, " %8d", ModuleStats[iLayer][iModule]); + total_modules[iModule] += ModuleStats[iLayer][iModule]; // sum up modules across layers + } + fprintf(ifile, " layer %2d\n", PlaneId[iLayer]); + } + fprintf(ifile, "\n------------------------------------------------------------------" + "---------------\n"); + + // total statistics + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + fprintf(ifile, " %8d", total_modules[iModule]); + total_modules[NofModuleTypes] += total_modules[iModule]; + } + fprintf(ifile, " %8d", total_modules[NofModuleTypes]); + fprintf(ifile, " number of modules\n"); + + //------------------------------------------------------------------------------ + + // number of FEBs + // fprintf(ifile,"\n#\n## febs\n#\n\n"); + fprintf(ifile, "# febs\n"); + + fprintf(ifile, " "); + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + if ((AsicsPerFeb[iModule] / 100) == 3) fprintf(ifile, "%8du", FebsPerModule[iModule]); + else if ((AsicsPerFeb[iModule] / 100) == 2) + fprintf(ifile, "%8ds", FebsPerModule[iModule]); + else + fprintf(ifile, "%8d ", FebsPerModule[iModule]); + } + fprintf(ifile, " FEBs per module\n"); + + // FEB total per type + total_febs[NofModuleTypes] = 0; // reset sum to 0 + fprintf(ifile, " "); + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + if ((AsicsPerFeb[iModule] / 100) == 3) { + total_febs[iModule] = total_modules[iModule] * FebsPerModule[iModule]; + fprintf(ifile, "%8du", total_febs[iModule]); + total_febs[NofModuleTypes] += total_febs[iModule]; + } + else + fprintf(ifile, " "); + } + fprintf(ifile, "%8d", total_febs[NofModuleTypes]); + fprintf(ifile, " ultimate FEBs\n"); + + // FEB total per type + total_febs[NofModuleTypes] = 0; // reset sum to 0 + fprintf(ifile, " "); + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + if ((AsicsPerFeb[iModule] / 100) == 2) { + total_febs[iModule] = total_modules[iModule] * FebsPerModule[iModule]; + fprintf(ifile, "%8ds", total_febs[iModule]); + total_febs[NofModuleTypes] += total_febs[iModule]; + } + else + fprintf(ifile, " "); + } + fprintf(ifile, "%8d", total_febs[NofModuleTypes]); + fprintf(ifile, " super FEBs\n"); + + // FEB total per type + total_febs[NofModuleTypes] = 0; // reset sum to 0 + fprintf(ifile, " "); + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + if ((AsicsPerFeb[iModule] / 100) == 1) { + total_febs[iModule] = total_modules[iModule] * FebsPerModule[iModule]; + fprintf(ifile, "%8d ", total_febs[iModule]); + total_febs[NofModuleTypes] += total_febs[iModule]; + } + else + fprintf(ifile, " "); + } + fprintf(ifile, "%8d", total_febs[NofModuleTypes]); + fprintf(ifile, " regular FEBs\n"); + + // FEB total over all types + total_febs[NofModuleTypes] = 0; // reset sum to 0 + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + total_febs[iModule] = total_modules[iModule] * FebsPerModule[iModule]; + fprintf(ifile, " %8d", total_febs[iModule]); + total_febs[NofModuleTypes] += total_febs[iModule]; + } + fprintf(ifile, " %8d", total_febs[NofModuleTypes]); + fprintf(ifile, " number of FEBs\n"); + + //------------------------------------------------------------------------------ + + // number of ASICs + // fprintf(ifile,"\n#\n## asics\n#\n\n"); + fprintf(ifile, "# asics\n"); + + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + fprintf(ifile, " %8d", AsicsPerFeb[iModule] % 100); + } + fprintf(ifile, " ASICs per FEB\n"); + + // ASICs per module + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + asics_per_module[iModule] = FebsPerModule[iModule] * (AsicsPerFeb[iModule] % 100); + fprintf(ifile, " %8d", asics_per_module[iModule]); + } + fprintf(ifile, " ASICs per module\n"); + + // ASICs per module type + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + total_asics[iModule] = total_febs[iModule] * (AsicsPerFeb[iModule] % 100); + fprintf(ifile, " %8d", total_asics[iModule]); + total_asics[NofModuleTypes] += total_asics[iModule]; + } + fprintf(ifile, " %8d", total_asics[NofModuleTypes]); + fprintf(ifile, " number of ASICs\n"); + + //------------------------------------------------------------------------------ + + // number of GBTXs + // fprintf(ifile,"\n#\n## asics\n#\n\n"); + fprintf(ifile, "# gbtx\n"); + + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + fprintf(ifile, " %8d", GbtxPerModule[iModule]); + } + fprintf(ifile, " GBTXs per module\n"); + + // GBTXs per module type + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + total_gbtx[iModule] = total_modules[iModule] * GbtxPerModule[iModule]; + fprintf(ifile, " %8d", total_gbtx[iModule]); + total_gbtx[NofModuleTypes] += total_gbtx[iModule]; + } + fprintf(ifile, " %8d", total_gbtx[NofModuleTypes]); + fprintf(ifile, " number of GBTXs\n"); + + // GBTX ROB types per module type + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + fprintf(ifile, " %8d", RobTypeOnModule[iModule]); + } + fprintf(ifile, " GBTX ROB types on module\n"); + + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + if ((RobTypeOnModule[iModule] % 10) == 7) total_rob7[iModule]++; + if ((RobTypeOnModule[iModule] / 10 % 10) == 7) total_rob7[iModule]++; + if ((RobTypeOnModule[iModule] / 100) == 7) total_rob7[iModule]++; + + if ((RobTypeOnModule[iModule] % 10) == 5) total_rob5[iModule]++; + if ((RobTypeOnModule[iModule] / 10 % 10) == 5) total_rob5[iModule]++; + if ((RobTypeOnModule[iModule] / 100) == 5) total_rob5[iModule]++; + + if ((RobTypeOnModule[iModule] % 10) == 3) total_rob3[iModule]++; + if ((RobTypeOnModule[iModule] / 10 % 10) == 3) total_rob3[iModule]++; + if ((RobTypeOnModule[iModule] / 100 % 10) == 3) total_rob3[iModule]++; + if ((RobTypeOnModule[iModule] / 1000 % 10) == 3) total_rob3[iModule]++; + if ((RobTypeOnModule[iModule] / 10000 % 10) == 3) total_rob3[iModule]++; + if ((RobTypeOnModule[iModule] / 100000) == 3) total_rob3[iModule]++; + } + + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + total_rob7[iModule] *= total_modules[iModule]; + fprintf(ifile, " %8d", total_rob7[iModule]); + total_rob7[NofModuleTypes] += total_rob7[iModule]; + } + fprintf(ifile, " %8d", total_rob7[NofModuleTypes]); + fprintf(ifile, " number of GBTX ROB7\n"); + + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + total_rob5[iModule] *= total_modules[iModule]; + fprintf(ifile, " %8d", total_rob5[iModule]); + total_rob5[NofModuleTypes] += total_rob5[iModule]; + } + fprintf(ifile, " %8d", total_rob5[NofModuleTypes]); + fprintf(ifile, " number of GBTX ROB5\n"); + + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + total_rob3[iModule] *= total_modules[iModule]; + fprintf(ifile, " %8d", total_rob3[iModule]); + total_rob3[NofModuleTypes] += total_rob3[iModule]; + } + fprintf(ifile, " %8d", total_rob3[NofModuleTypes]); + fprintf(ifile, " number of GBTX ROB3\n"); + + //------------------------------------------------------------------------------ + fprintf(ifile, "# e-links\n"); + + // e-links used + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) + fprintf(ifile, " %8d", asics_per_module[iModule] * 2); + fprintf(ifile, " %8d", total_asics[NofModuleTypes] * 2); + fprintf(ifile, " e-links used\n"); + + // e-links available + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) + fprintf(ifile, " %8d", GbtxPerModule[iModule] * 14); + fprintf(ifile, " %8d", total_gbtx[NofModuleTypes] * 14); + fprintf(ifile, " e-links available\n"); + + // e-link efficiency + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + if (total_gbtx[iModule] != 0) + fprintf(ifile, " %7.1f%%", (float) total_asics[iModule] * 2 / (total_gbtx[iModule] * 14) * 100); + else + fprintf(ifile, " -"); + } + if (total_gbtx[NofModuleTypes] != 0) + fprintf(ifile, " %7.1f%%", (float) total_asics[NofModuleTypes] * 2 / (total_gbtx[NofModuleTypes] * 14) * 100); + fprintf(ifile, " e-link efficiency\n\n"); + + //------------------------------------------------------------------------------ + + // number of channels + fprintf(ifile, "# channels\n"); + + // channels per module + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + if ((AsicsPerFeb[iModule] % 100) == 16) { + channels_per_feb[iModule] = 80 * 6; // rows // 84, if 63 of 64 ch used + channels_per_module[iModule] = channels_per_feb[iModule] * FebsPerModule[iModule]; + } + if ((AsicsPerFeb[iModule] % 100) == 15) { + channels_per_feb[iModule] = 80 * 6; // rows + channels_per_module[iModule] = channels_per_feb[iModule] * FebsPerModule[iModule]; + } + if ((AsicsPerFeb[iModule] % 100) == 10) { + // channels_per_feb[iModule] = 80 * 4; // rows + channels_per_feb[iModule] = (AsicsPerFeb[iModule] % 100) * 16; // electronic channels + channels_per_module[iModule] = channels_per_feb[iModule] * FebsPerModule[iModule]; + } + if ((AsicsPerFeb[iModule] % 100) == 5) { + channels_per_feb[iModule] = 80 * 2; // rows + channels_per_module[iModule] = channels_per_feb[iModule] * FebsPerModule[iModule]; + } + + if ((AsicsPerFeb[iModule] % 100) == 8) { + channels_per_feb[iModule] = 128 * 2; // rows + channels_per_module[iModule] = channels_per_feb[iModule] * FebsPerModule[iModule]; + } + } + + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) + fprintf(ifile, " %8d", channels_per_module[iModule]); + fprintf(ifile, " channels per module\n"); + + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) + fprintf(ifile, " %8d", channels_per_feb[iModule]); + fprintf(ifile, " channels per feb\n"); + + // channels used + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + total_channels[iModule] = channels_per_module[iModule] * total_modules[iModule]; + fprintf(ifile, " %8d", total_channels[iModule]); + total_channels[NofModuleTypes] += total_channels[iModule]; + } + fprintf(ifile, " %8d", total_channels[NofModuleTypes]); + fprintf(ifile, " channels used\n"); + + // channels available + fprintf(ifile, " "); + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) { + if ((AsicsPerFeb[iModule] / 100) == 4) // FASP case + { + fprintf(ifile, "%8dF", total_asics[iModule] * 16); + total_channels_u += total_asics[iModule] * 16; + } + else if ((AsicsPerFeb[iModule] / 100) == 3) { + fprintf(ifile, "%8du", total_asics[iModule] * 32); + total_channels_u += total_asics[iModule] * 32; + } + else if ((AsicsPerFeb[iModule] / 100) == 2) { + fprintf(ifile, "%8ds", total_asics[iModule] * 32); + total_channels_s += total_asics[iModule] * 32; + } + else { + fprintf(ifile, "%8d ", total_asics[iModule] * 32); + total_channels_r += total_asics[iModule] * 32; + } + } + fprintf(ifile, "%8d", total_asics[NofModuleTypes] * 32); + fprintf(ifile, " channels available\n"); + + // channel ratio for u,s,r density + fprintf(ifile, " "); + fprintf(ifile, "%7.1f%%u", (float) total_channels_u / (total_asics[NofModuleTypes] * 32) * 100); + fprintf(ifile, "%7.1f%%s", (float) total_channels_s / (total_asics[NofModuleTypes] * 32) * 100); + fprintf(ifile, "%7.1f%%r", (float) total_channels_r / (total_asics[NofModuleTypes] * 32) * 100); + fprintf(ifile, " channel ratio\n"); + + fprintf(ifile, "\n"); + fprintf(ifile, "%8.1f%% channel efficiency\n", + 1. * total_channels[NofModuleTypes] / (total_asics[NofModuleTypes] * 32) * 100); + + //------------------------------------------------------------------------------ + + // total surface of TRD + for (Int_t iModule = 0; iModule < NofModuleTypes; iModule++) + if (iModule <= 3) { + total_surface += total_modules[iModule] * DetectorSizeX[0] / 100 * DetectorSizeY[0] / 100; + total_actarea += total_modules[iModule] * (DetectorSizeX[0] - 2 * FrameWidth[0]) / 100 + * (DetectorSizeY[0] - 2 * FrameWidth[0]) / 100; + } + else { + total_surface += total_modules[iModule] * DetectorSizeX[1] / 100 * DetectorSizeY[1] / 100; + total_actarea += total_modules[iModule] * (DetectorSizeX[1] - 2 * FrameWidth[1]) / 100 + * (DetectorSizeY[1] - 2 * FrameWidth[1]) / 100; + } + fprintf(ifile, "\n"); + + // summary + fprintf(ifile, "%7.2f m2 total surface \n", total_surface); + fprintf(ifile, "%7.2f m2 total active area\n", total_actarea); + fprintf(ifile, "%7.2f m3 total gas volume \n", + total_actarea * gas_thickness / 100); // convert cm to m for thickness + + fprintf(ifile, "%7.2f cm2/ch average channel size\n", 100. * 100 * total_actarea / total_channels[NofModuleTypes]); + fprintf(ifile, "%7.2f ch/m2 channels per m2 active area\n", 1. * total_channels[NofModuleTypes] / total_actarea); + fprintf(ifile, "\n"); + + // gas volume position + fprintf(ifile, "# gas volume position\n"); + for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++) + if (ShowLayer[iLayer]) + fprintf(ifile, "%10.4f cm position of gas volume - layer %2d\n", + LayerPosition[iLayer] + LayerThickness / 2. + gas_position, PlaneId[iLayer]); + fprintf(ifile, "\n"); + + // angles + fprintf(ifile, "# angles of acceptance\n"); + + for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++) + if (ShowLayer[iLayer]) { + if (iLayer <= 5) { + // fprintf(ifile,"y %10.4f cm x %10.4f cm\n", 2.5 * DetectorSizeY[1], 3.5 * DetectorSizeX[1]); + Int_t type(LayerType[iLayer] / 10); + yangle = atan(2.5 * DetectorSizeY[type] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) + * 180. / acos(-1.); + xangle = atan(3.5 * DetectorSizeX[type] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) + * 180. / acos(-1.); + } + if ((iLayer > 5) && (iLayer < 8)) { + // fprintf(ifile,"y %10.4f cm x %10.4f cm\n", 3.5 * DetectorSizeY[1], 4.5 * DetectorSizeX[1]); + yangle = atan(3.5 * DetectorSizeY[1] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180. + / acos(-1.); + xangle = atan(4.5 * DetectorSizeX[1] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180. + / acos(-1.); + } + if ((iLayer >= 8) && (iLayer < 10)) { + // fprintf(ifile,"y %10.4f cm x %10.4f cm\n", 4.5 * DetectorSizeY[1], 5.5 * DetectorSizeX[1]); + yangle = atan(4.5 * DetectorSizeY[1] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180. + / acos(-1.); + xangle = atan(5.5 * DetectorSizeX[1] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180. + / acos(-1.); + } + fprintf(ifile, "v: %5.2f deg, h: %5.2f deg - vertical/horizontal - layer %2d\n", yangle, xangle, PlaneId[iLayer]); + } + fprintf(ifile, "\n"); + + // aperture + fprintf(ifile, "# inner aperture\n"); + + for (Int_t iLayer = 0; iLayer < MaxLayers; iLayer++) + if (ShowLayer[iLayer]) { + if (iLayer <= 5) { + // fprintf(ifile,"y %10.4f cm x %10.4f cm\n", 2.5 * DetectorSizeY[1], 3.5 * DetectorSizeX[1]); + yangle = atan(0.5 * DetectorSizeY[0] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180. + / acos(-1.); + xangle = atan(0.5 * DetectorSizeX[0] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180. + / acos(-1.); + } + if ((iLayer > 5) && (iLayer < 8)) { + // fprintf(ifile,"y %10.4f cm x %10.4f cm\n", 3.5 * DetectorSizeY[1], 4.5 * DetectorSizeX[1]); + yangle = atan(0.5 * DetectorSizeY[0] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180. + / acos(-1.); + xangle = atan(0.5 * DetectorSizeX[0] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180. + / acos(-1.); + } + if ((iLayer >= 8) && (iLayer < 10)) { + // fprintf(ifile,"y %10.4f cm x %10.4f cm\n", 4.5 * DetectorSizeY[1], 5.5 * DetectorSizeX[1]); + yangle = atan(0.5 * DetectorSizeY[0] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180. + / acos(-1.); + xangle = atan(0.5 * DetectorSizeX[0] / (LayerPosition[iLayer] + LayerThickness / 2. + padplane_position)) * 180. + / acos(-1.); + } + fprintf(ifile, "v: %5.2f deg, h: %5.2f deg - vertical/horizontal - layer %2d\n", yangle, xangle, PlaneId[iLayer]); + } + fprintf(ifile, "\n"); + + fclose(ifile); +} + + +void create_materials_from_media_file() +{ + // Use the FairRoot geometry interface to load the media which are already defined + FairGeoLoader* geoLoad = new FairGeoLoader("TGeo", "FairGeoLoader"); + FairGeoInterface* geoFace = geoLoad->getGeoInterface(); + TString geoPath = gSystem->Getenv("VMCWORKDIR"); + TString medFile = geoPath + "/geometry/media.geo"; + geoFace->setMediaFile(medFile); + geoFace->readMedia(); + + // Read the required media and create them in the GeoManager + FairGeoMedia* geoMedia = geoFace->getMedia(); + FairGeoBuilder* geoBuild = geoLoad->getGeoBuilder(); + + FairGeoMedium* air = geoMedia->getMedium(KeepingVolumeMedium); + FairGeoMedium* pefoam20 = geoMedia->getMedium(RadiatorVolumeMedium); + FairGeoMedium* G10 = geoMedia->getMedium(LatticeVolumeMedium); + FairGeoMedium* kapton = geoMedia->getMedium(KaptonVolumeMedium); + FairGeoMedium* trdGas = geoMedia->getMedium(GasVolumeMedium); + FairGeoMedium* copper = geoMedia->getMedium(PadCopperVolumeMedium); + FairGeoMedium* carbon = geoMedia->getMedium(CarbonVolumeMedium); + FairGeoMedium* honeycomb = geoMedia->getMedium(HoneycombVolumeMedium); + FairGeoMedium* aluminium = geoMedia->getMedium(AluminiumVolumeMedium); + + // FairGeoMedium* goldCoatedCopper = geoMedia->getMedium("goldcoatedcopper"); + // FairGeoMedium* polypropylene = geoMedia->getMedium("polypropylene"); + // FairGeoMedium* mylar = geoMedia->getMedium("mylar"); + + geoBuild->createMedium(air); + geoBuild->createMedium(pefoam20); + geoBuild->createMedium(trdGas); + geoBuild->createMedium(honeycomb); + geoBuild->createMedium(carbon); + geoBuild->createMedium(G10); + geoBuild->createMedium(copper); + geoBuild->createMedium(kapton); + geoBuild->createMedium(aluminium); + + // geoBuild->createMedium(goldCoatedCopper); + // geoBuild->createMedium(polypropylene); + // geoBuild->createMedium(mylar); +} + +TGeoVolume* create_trd_module_type(Int_t moduleType) +{ + Int_t type = ModuleType[moduleType - 1]; + Double_t sizeX = DetectorSizeX[type]; + Double_t sizeY = DetectorSizeY[type]; + Double_t frameWidth = FrameWidth[type]; + Double_t activeAreaX = sizeX - 2 * frameWidth; + Double_t activeAreaY = sizeY - 2 * frameWidth; + + TGeoMedium* keepVolMed = gGeoMan->GetMedium(KeepingVolumeMedium); + TGeoMedium* radVolMed = gGeoMan->GetMedium(RadiatorVolumeMedium); + TGeoMedium* latticeVolMed = gGeoMan->GetMedium(LatticeVolumeMedium); + TGeoMedium* kaptonVolMed = gGeoMan->GetMedium(KaptonVolumeMedium); + TGeoMedium* gasVolMed = gGeoMan->GetMedium(GasVolumeMedium); + TGeoMedium* padcopperVolMed = gGeoMan->GetMedium(PadCopperVolumeMedium); + TGeoMedium* padpcbVolMed = gGeoMan->GetMedium(PadPcbVolumeMedium); + TGeoMedium* honeycombVolMed = gGeoMan->GetMedium(HoneycombVolumeMedium); + TGeoMedium* carbonVolMed = gGeoMan->GetMedium(CarbonVolumeMedium); + // TGeoMedium* mylarVolMed = gGeoMan->GetMedium(MylarVolumeMedium); + // TGeoMedium* electronicsVolMed = gGeoMan->GetMedium(ElectronicsVolumeMedium); + TGeoMedium* frameVolMed = gGeoMan->GetMedium(FrameVolumeMedium); + TGeoMedium* aluledgeVolMed = gGeoMan->GetMedium(AluLegdeVolumeMedium); + TGeoMedium* febVolMed = gGeoMan->GetMedium(FebVolumeMedium); + TGeoMedium* asicVolMed = gGeoMan->GetMedium(AsicVolumeMedium); + // TGeoMedium* aluminiumVolMed = gGeoMan->GetMedium(AluminiumVolumeMedium); + + TString name = Form("module%d", moduleType); + TGeoVolume* module = new TGeoVolumeAssembly(name); + + + if (IncludeRadiator) { + // Radiator + // TGeoBBox* trd_radiator = new TGeoBBox("", activeAreaX /2., activeAreaY /2., radiator_thickness /2.); + TGeoBBox* trd_radiator = new TGeoBBox("trd_radiator", sizeX / 2., sizeY / 2., radiator_thickness / 2.); + TGeoVolume* trdmod1_radvol = new TGeoVolume("radiator", trd_radiator, radVolMed); + // TGeoVolume* trdmod1_radvol = new TGeoVolume(Form("module%d_radiator", moduleType), trd_radiator, radVolMed); + // TGeoVolume* trdmod1_radvol = new TGeoVolume(Form("trd1mod%dradiator", moduleType), trd_radiator, radVolMed); + trdmod1_radvol->SetLineColor(kBlue); + trdmod1_radvol->SetTransparency(70); // (60); // (70); // set transparency for the TRD radiator + TGeoTranslation* trd_radiator_trans = new TGeoTranslation("", 0., 0., radiator_position); + module->AddNode(trdmod1_radvol, 1, trd_radiator_trans); + } + + // Lattice grid + if (IncludeLattice) { + + if (type == 0) // inner modules + { + // printf("lattice type %d\n", type); + // drift window - lattice grid - sprossenfenster + TGeoBBox* trd_lattice_mod0_ho = new TGeoBBox("trd_lattice_mod0_ho", sizeX / 2., lattice_o_width[type] / 2., + lattice_thickness / 2.); // horizontal outer + TGeoBBox* trd_lattice_mod0_hi = + new TGeoBBox("trd_lattice_mod0_hi", sizeX / 2. - lattice_o_width[type], lattice_i_width[type] / 2., + lattice_thickness / 2.); // horizontal inner + TGeoBBox* trd_lattice_mod0_vo = + new TGeoBBox("trd_lattice_mod0_vo", lattice_o_width[type] / 2., sizeX / 2. - lattice_o_width[type], + lattice_thickness / 2.); // vertical outer + TGeoBBox* trd_lattice_mod0_vi = new TGeoBBox("trd_lattice_mod0_vi", lattice_i_width[type] / 2., + 0.20 * activeAreaY / 2. - lattice_i_width[type] / 2., + lattice_thickness / 2.); // vertical inner + TGeoBBox* trd_lattice_mod0_vb = new TGeoBBox("trd_lattice_mod0_vb", lattice_i_width[type] / 2., + 0.20 * activeAreaY / 2. - lattice_i_width[type] / 4., + lattice_thickness / 2.); // vertical border + + TGeoVolume* trd_lattice_mod0_vol_ho = new TGeoVolume("lattice0ho", trd_lattice_mod0_ho, latticeVolMed); + TGeoVolume* trd_lattice_mod0_vol_hi = new TGeoVolume("lattice0hi", trd_lattice_mod0_hi, latticeVolMed); + TGeoVolume* trd_lattice_mod0_vol_vo = new TGeoVolume("lattice0vo", trd_lattice_mod0_vo, latticeVolMed); + TGeoVolume* trd_lattice_mod0_vol_vi = new TGeoVolume("lattice0vi", trd_lattice_mod0_vi, latticeVolMed); + TGeoVolume* trd_lattice_mod0_vol_vb = new TGeoVolume("lattice0vb", trd_lattice_mod0_vb, latticeVolMed); + + trd_lattice_mod0_vol_ho->SetLineColor(kYellow); // kBlue); + trd_lattice_mod0_vol_vo->SetLineColor(kYellow); // kOrange); + trd_lattice_mod0_vol_hi->SetLineColor(kYellow); // kRed); + trd_lattice_mod0_vol_vi->SetLineColor(kYellow); // kWhite); + trd_lattice_mod0_vol_vb->SetLineColor(kYellow); + + TGeoTranslation* tv010 = + new TGeoTranslation("tv010", 0., (1.00 * activeAreaY / 2. + lattice_o_width[type] / 2.), 0); + TGeoTranslation* tv015 = + new TGeoTranslation("tv015", 0., -(1.00 * activeAreaY / 2. + lattice_o_width[type] / 2.), 0); + + TGeoTranslation* th020 = + new TGeoTranslation("th020", (1.00 * activeAreaX / 2. + lattice_o_width[type] / 2.), 0., 0); + TGeoTranslation* th025 = + new TGeoTranslation("th025", -(1.00 * activeAreaX / 2. + lattice_o_width[type] / 2.), 0., 0); + + Double_t hypos0[4] = {(0.60 * activeAreaY / 2.), (0.20 * activeAreaY / 2.), -(0.20 * activeAreaY / 2.), + -(0.60 * activeAreaY / 2.)}; + + Double_t vxpos0[4] = {(0.60 * activeAreaX / 2.), (0.20 * activeAreaX / 2.), -(0.20 * activeAreaX / 2.), + -(0.60 * activeAreaX / 2.)}; + + Double_t vypos0[5] = {(0.80 * activeAreaY / 2. + lattice_i_width[type] / 4.), (0.40 * activeAreaY / 2.), + (0.00 * activeAreaY / 2.), -(0.40 * activeAreaY / 2.), + -(0.80 * activeAreaY / 2. + lattice_i_width[type] / 4.)}; + + // TGeoVolumeAssembly* trdmod0_lattice = new TGeoVolumeAssembly("mod0lattice"); // volume for lattice grid + + TGeoBBox* trd_lattice_mod0 = new TGeoBBox("trd_lattice_mod0", sizeX / 2., sizeY / 2., lattice_thickness / 2.); + TGeoVolume* trdmod0_lattice = new TGeoVolume("lat_grid_mod0", trd_lattice_mod0, keepVolMed); + + // trdmod0_lattice->SetLineColor(kGreen); // set color for keeping volume + + // outer frame + trdmod0_lattice->AddNode(trd_lattice_mod0_vol_ho, 1, tv010); + trdmod0_lattice->AddNode(trd_lattice_mod0_vol_ho, 2, tv015); + + trdmod0_lattice->AddNode(trd_lattice_mod0_vol_vo, 3, th020); + trdmod0_lattice->AddNode(trd_lattice_mod0_vol_vo, 4, th025); + + // lattice piece number + Int_t lat0_no = 5; + + // horizontal bars + for (Int_t y = 0; y < 4; y++) { + TGeoTranslation* t0xy = new TGeoTranslation("", 0, hypos0[y], 0); + trdmod0_lattice->AddNode(trd_lattice_mod0_vol_hi, lat0_no, t0xy); + lat0_no++; + } + + // vertical bars + for (Int_t x = 0; x < 4; x++) + for (Int_t y = 0; y < 5; y++) { + TGeoTranslation* t0xy = new TGeoTranslation("", vxpos0[x], vypos0[y], 0); + if ((y == 0) || (y == 4)) trdmod0_lattice->AddNode(trd_lattice_mod0_vol_vb, lat0_no, t0xy); // border piece + else + trdmod0_lattice->AddNode(trd_lattice_mod0_vol_vi, lat0_no, t0xy); // middle piece + lat0_no++; + } + + // add lattice to module + TGeoTranslation* trd_lattice_trans = new TGeoTranslation("", 0., 0., lattice_position); + module->AddNode(trdmod0_lattice, 1, trd_lattice_trans); + } + + else if (type == 1) // outer modules + { + // printf("lattice type %d\n", type); + // drift window - lattice grid - sprossenfenster + TGeoBBox* trd_lattice_mod1_ho = new TGeoBBox("trd_lattice_mod1_ho", sizeX / 2., lattice_o_width[type] / 2., + lattice_thickness / 2.); // horizontal outer + TGeoBBox* trd_lattice_mod1_hi = + new TGeoBBox("trd_lattice_mod1_hi", sizeX / 2. - lattice_o_width[type], lattice_i_width[type] / 2., + lattice_thickness / 2.); // horizontal inner + TGeoBBox* trd_lattice_mod1_vo = + new TGeoBBox("trd_lattice_mod1_vo", lattice_o_width[type] / 2., sizeX / 2. - lattice_o_width[type], + lattice_thickness / 2.); // vertical outer + TGeoBBox* trd_lattice_mod1_vi = new TGeoBBox("trd_lattice_mod1_vi", lattice_i_width[type] / 2., + 0.125 * activeAreaY / 2. - lattice_i_width[type] / 2., + lattice_thickness / 2.); // vertical inner + TGeoBBox* trd_lattice_mod1_vb = new TGeoBBox("trd_lattice_mod1_vb", lattice_i_width[type] / 2., + 0.125 * activeAreaY / 2. - lattice_i_width[type] / 4., + lattice_thickness / 2.); // vertical border + + TGeoVolume* trd_lattice_mod1_vol_ho = new TGeoVolume("lattice1ho", trd_lattice_mod1_ho, latticeVolMed); + TGeoVolume* trd_lattice_mod1_vol_hi = new TGeoVolume("lattice1hi", trd_lattice_mod1_hi, latticeVolMed); + TGeoVolume* trd_lattice_mod1_vol_vo = new TGeoVolume("lattice1vo", trd_lattice_mod1_vo, latticeVolMed); + TGeoVolume* trd_lattice_mod1_vol_vi = new TGeoVolume("lattice1vi", trd_lattice_mod1_vi, latticeVolMed); + TGeoVolume* trd_lattice_mod1_vol_vb = new TGeoVolume("lattice1vb", trd_lattice_mod1_vb, latticeVolMed); + + trd_lattice_mod1_vol_ho->SetLineColor(kYellow); // kBlue); + trd_lattice_mod1_vol_vo->SetLineColor(kYellow); // kOrange); + trd_lattice_mod1_vol_hi->SetLineColor(kYellow); // kRed); + trd_lattice_mod1_vol_vi->SetLineColor(kYellow); // kWhite); + trd_lattice_mod1_vol_vb->SetLineColor(kYellow); + + TGeoTranslation* tv110 = + new TGeoTranslation("tv110", 0., (1.00 * activeAreaY / 2. + lattice_o_width[type] / 2.), 0); + TGeoTranslation* tv118 = + new TGeoTranslation("tv118", 0., -(1.00 * activeAreaY / 2. + lattice_o_width[type] / 2.), 0); + + TGeoTranslation* th120 = + new TGeoTranslation("th120", (1.00 * activeAreaX / 2. + lattice_o_width[type] / 2.), 0., 0); + TGeoTranslation* th128 = + new TGeoTranslation("th128", -(1.00 * activeAreaX / 2. + lattice_o_width[type] / 2.), 0., 0); + + Double_t hypos1[7] = {(0.75 * activeAreaY / 2.), (0.50 * activeAreaY / 2.), (0.25 * activeAreaY / 2.), + (0.00 * activeAreaY / 2.), -(0.25 * activeAreaY / 2.), -(0.50 * activeAreaY / 2.), + -(0.75 * activeAreaY / 2.)}; + + Double_t vxpos1[7] = {(0.75 * activeAreaX / 2.), (0.50 * activeAreaX / 2.), (0.25 * activeAreaX / 2.), + (0.00 * activeAreaX / 2.), -(0.25 * activeAreaX / 2.), -(0.50 * activeAreaX / 2.), + -(0.75 * activeAreaX / 2.)}; + + Double_t vypos1[8] = {(0.875 * activeAreaY / 2. + lattice_i_width[type] / 4.), + (0.625 * activeAreaY / 2.), + (0.375 * activeAreaY / 2.), + (0.125 * activeAreaY / 2.), + -(0.125 * activeAreaY / 2.), + -(0.375 * activeAreaY / 2.), + -(0.625 * activeAreaY / 2.), + -(0.875 * activeAreaY / 2. + lattice_i_width[type] / 4.)}; + + // TGeoVolumeAssembly* trdmod1_lattice = new TGeoVolumeAssembly("mod1lattice"); // volume for lattice grid + + TGeoBBox* trd_lattice_mod1 = new TGeoBBox("trd_lattice_mod1", sizeX / 2., sizeY / 2., lattice_thickness / 2.); + TGeoVolume* trdmod1_lattice = new TGeoVolume("lat_grid_mod1", trd_lattice_mod1, keepVolMed); + + // trdmod1_lattice->SetLineColor(kGreen); // set color for keeping volume + + // outer frame + trdmod1_lattice->AddNode(trd_lattice_mod1_vol_ho, 1, tv110); + trdmod1_lattice->AddNode(trd_lattice_mod1_vol_ho, 2, tv118); + + trdmod1_lattice->AddNode(trd_lattice_mod1_vol_vo, 3, th120); + trdmod1_lattice->AddNode(trd_lattice_mod1_vol_vo, 4, th128); + + // lattice piece number + Int_t lat1_no = 5; + + // horizontal bars + for (Int_t y = 0; y < 7; y++) { + TGeoTranslation* t1xy = new TGeoTranslation("", 0, hypos1[y], 0); + trdmod1_lattice->AddNode(trd_lattice_mod1_vol_hi, lat1_no, t1xy); + lat1_no++; + } + + // vertical bars + for (Int_t x = 0; x < 7; x++) + for (Int_t y = 0; y < 8; y++) { + TGeoTranslation* t1xy = new TGeoTranslation("", vxpos1[x], vypos1[y], 0); + if ((y == 0) || (y == 7)) trdmod1_lattice->AddNode(trd_lattice_mod1_vol_vb, lat1_no, t1xy); // border piece + else + trdmod1_lattice->AddNode(trd_lattice_mod1_vol_vi, lat1_no, t1xy); // middle piece + lat1_no++; + } + + // add lattice to module + TGeoTranslation* trd_lattice_trans = new TGeoTranslation("", 0., 0., lattice_position); + module->AddNode(trdmod1_lattice, 1, trd_lattice_trans); + } + + } // with lattice grid + + if (IncludeKaptonFoil) { + // Kapton Foil + TGeoBBox* trd_kapton = new TGeoBBox("trd_kapton", sizeX / 2., sizeY / 2., kapton_thickness / 2.); + TGeoVolume* trdmod1_kaptonvol = new TGeoVolume("kaptonfoil", trd_kapton, kaptonVolMed); + // TGeoVolume* trdmod1_kaptonvol = new TGeoVolume(Form("module%d_kaptonfoil", moduleType), trd_kapton, kaptonVolMed); + // TGeoVolume* trdmod1_kaptonvol = new TGeoVolume(Form("trd1mod%dkapton", moduleType), trd_kapton, kaptonVolMed); + trdmod1_kaptonvol->SetLineColor(kGreen); + TGeoTranslation* trd_kapton_trans = new TGeoTranslation("", 0., 0., kapton_position); + module->AddNode(trdmod1_kaptonvol, 1, trd_kapton_trans); + } + + // start of Frame in z + // Gas + TGeoBBox* trd_gas = new TGeoBBox("trd_gas", activeAreaX / 2., activeAreaY / 2., gas_thickness / 2.); + TGeoVolume* trdmod1_gasvol = new TGeoVolume("gas", trd_gas, gasVolMed); + // TGeoVolume* trdmod1_gasvol = new TGeoVolume(Form("module%d_gas", moduleType), trd_gas, gasVolMed); + // TGeoVolume* trdmod1_gasvol = new TGeoVolume(Form("trd1mod%dgas", moduleType), trd_gas, gasVolMed); + // trdmod1_gasvol->SetLineColor(kBlue); + trdmod1_gasvol->SetLineColor(kGreen); // to avoid blue overlaps in the screenshots + trdmod1_gasvol->SetTransparency(40); // set transparency for the TRD gas + TGeoTranslation* trd_gas_trans = new TGeoTranslation("", 0., 0., gas_position); + module->AddNode(trdmod1_gasvol, 1, trd_gas_trans); + // end of Frame in z + + if (IncludeGasFrame) { + // frame1 + TGeoBBox* trd_frame1 = new TGeoBBox("trd_frame1", sizeX / 2., frameWidth / 2., frame_thickness / 2.); + TGeoVolume* trdmod1_frame1vol = new TGeoVolume("frame1", trd_frame1, frameVolMed); + trdmod1_frame1vol->SetLineColor(kRed); + + // translations + TGeoTranslation* trd_frame1_trans = new TGeoTranslation("", 0., activeAreaY / 2. + frameWidth / 2., frame_position); + module->AddNode(trdmod1_frame1vol, 1, trd_frame1_trans); + trd_frame1_trans = new TGeoTranslation("", 0., -(activeAreaY / 2. + frameWidth / 2.), frame_position); + module->AddNode(trdmod1_frame1vol, 2, trd_frame1_trans); + + + // frame2 + TGeoBBox* trd_frame2 = new TGeoBBox("trd_frame2", frameWidth / 2., activeAreaY / 2., frame_thickness / 2.); + TGeoVolume* trdmod1_frame2vol = new TGeoVolume("frame2", trd_frame2, frameVolMed); + trdmod1_frame2vol->SetLineColor(kRed); + + // translations + TGeoTranslation* trd_frame2_trans = new TGeoTranslation("", activeAreaX / 2. + frameWidth / 2., 0., frame_position); + module->AddNode(trdmod1_frame2vol, 1, trd_frame2_trans); + trd_frame2_trans = new TGeoTranslation("", -(activeAreaX / 2. + frameWidth / 2.), 0., frame_position); + module->AddNode(trdmod1_frame2vol, 2, trd_frame2_trans); + } + + if (IncludePadplane) { + // Pad Copper + TGeoBBox* trd_padcopper = new TGeoBBox("trd_padcopper", sizeX / 2., sizeY / 2., padcopper_thickness / 2.); + TGeoVolume* trdmod1_padcoppervol = new TGeoVolume("padcopper", trd_padcopper, padcopperVolMed); + // TGeoVolume* trdmod1_padcoppervol = new TGeoVolume(Form("module%d_padcopper", moduleType), trd_padcopper, padcopperVolMed); + // TGeoVolume* trdmod1_padcoppervol = new TGeoVolume(Form("trd1mod%dpadcopper", moduleType), trd_padcopper, padcopperVolMed); + trdmod1_padcoppervol->SetLineColor(kOrange); + TGeoTranslation* trd_padcopper_trans = new TGeoTranslation("", 0., 0., padcopper_position); + module->AddNode(trdmod1_padcoppervol, 1, trd_padcopper_trans); + + // Pad Plane + TGeoBBox* trd_padpcb = new TGeoBBox("trd_padpcb", sizeX / 2., sizeY / 2., padplane_thickness / 2.); + TGeoVolume* trdmod1_padpcbvol = new TGeoVolume("padplane", trd_padpcb, padpcbVolMed); + // TGeoVolume* trdmod1_padpcbvol = new TGeoVolume(Form("module%d_padplane", moduleType), trd_padpcb, padpcbVolMed); + // TGeoVolume* trdmod1_padpcbvol = new TGeoVolume(Form("trd1mod%dpadplane", moduleType), trd_padpcb, padpcbVolMed); + trdmod1_padpcbvol->SetLineColor(kBlue); + TGeoTranslation* trd_padpcb_trans = new TGeoTranslation("", 0., 0., padplane_position); + module->AddNode(trdmod1_padpcbvol, 1, trd_padpcb_trans); + } + + if (IncludeBackpanel) { + // Honeycomb + TGeoBBox* trd_honeycomb = new TGeoBBox("trd_honeycomb", sizeX / 2., sizeY / 2., honeycomb_thickness / 2.); + TGeoVolume* trdmod1_honeycombvol = new TGeoVolume("honeycomb", trd_honeycomb, honeycombVolMed); + // TGeoVolume* trdmod1_honeycombvol = new TGeoVolume(Form("module%d_honeycomb", moduleType), trd_honeycomb, honeycombVolMed); + // TGeoVolume* trdmod1_honeycombvol = new TGeoVolume(Form("trd1mod%dhoneycomb", moduleType), trd_honeycomb, honeycombVolMed); + trdmod1_honeycombvol->SetLineColor(kOrange); + TGeoTranslation* trd_honeycomb_trans = new TGeoTranslation("", 0., 0., honeycomb_position); + module->AddNode(trdmod1_honeycombvol, 1, trd_honeycomb_trans); + + // Carbon fiber layers + TGeoBBox* trd_carbon = new TGeoBBox("trd_carbon", sizeX / 2., sizeY / 2., carbon_thickness / 2.); + TGeoVolume* trdmod1_carbonvol = new TGeoVolume("carbonsheet", trd_carbon, carbonVolMed); + // TGeoVolume* trdmod1_carbonvol = new TGeoVolume(Form("module%d_carbonsheet", moduleType), trd_carbon, carbonVolMed); + // TGeoVolume* trdmod1_carbonvol = new TGeoVolume(Form("trd1mod%dcarbon", moduleType), trd_carbon, carbonVolMed); + trdmod1_carbonvol->SetLineColor(kGreen); + TGeoTranslation* trd_carbon_trans = new TGeoTranslation("", 0., 0., carbon_position); + module->AddNode(trdmod1_carbonvol, 1, trd_carbon_trans); + } + + if (IncludeAluLedge) { + // Al-ledge + TGeoBBox* trd_aluledge1 = new TGeoBBox("trd_aluledge1", sizeY / 2., aluminium_width / 2., aluminium_thickness / 2.); + TGeoVolume* trdmod1_aluledge1vol = new TGeoVolume("aluledge1", trd_aluledge1, aluledgeVolMed); + trdmod1_aluledge1vol->SetLineColor(kRed); + + // translations + TGeoTranslation* trd_aluledge1_trans = + new TGeoTranslation("", 0., sizeY / 2. - aluminium_width / 2., aluminium_position); + module->AddNode(trdmod1_aluledge1vol, 1, trd_aluledge1_trans); + trd_aluledge1_trans = new TGeoTranslation("", 0., -(sizeY / 2. - aluminium_width / 2.), aluminium_position); + module->AddNode(trdmod1_aluledge1vol, 2, trd_aluledge1_trans); + + + // Al-ledge + TGeoBBox* trd_aluledge2 = + new TGeoBBox("trd_aluledge2", aluminium_width / 2., sizeY / 2. - aluminium_width, aluminium_thickness / 2.); + TGeoVolume* trdmod1_aluledge2vol = new TGeoVolume("aluledge2", trd_aluledge2, aluledgeVolMed); + trdmod1_aluledge2vol->SetLineColor(kRed); + + // translations + TGeoTranslation* trd_aluledge2_trans = + new TGeoTranslation("", sizeX / 2. - aluminium_width / 2., 0., aluminium_position); + module->AddNode(trdmod1_aluledge2vol, 1, trd_aluledge2_trans); + trd_aluledge2_trans = new TGeoTranslation("", -(sizeX / 2. - aluminium_width / 2.), 0., aluminium_position); + module->AddNode(trdmod1_aluledge2vol, 2, trd_aluledge2_trans); + } + + // FEBs + if (IncludeFebs) { + // assemblies + TGeoVolumeAssembly* trd_feb_vol = new TGeoVolumeAssembly("febvol"); // the mother volume of all FEBs + TGeoVolumeAssembly* trd_feb_box = + new TGeoVolumeAssembly("febbox"); // volume for inclined FEBs, then shifted along y + //TGeoVolumeAssembly* trd_feb_vol = new TGeoVolumeAssembly(Form("module%d_febvol", moduleType)); // the mother volume of all FEBs + //TGeoVolumeAssembly* trd_feb_box = new TGeoVolumeAssembly(Form("module%d_febbox", moduleType)); // volume for inclined FEBs, then shifted along y + //TGeoVolumeAssembly* trd_feb_vol = new TGeoVolumeAssembly(Form("trd1mod%dfebvol", moduleType)); // the mother volume of all FEBs + //TGeoVolumeAssembly* trd_feb_box = new TGeoVolumeAssembly(Form("trd1mod%dfebbox", moduleType)); // volume for inclined FEBs, then shifted along y + + // translations + rotations + TGeoTranslation* trd_feb_trans1; // center to corner + TGeoTranslation* trd_feb_trans2; // corner back + TGeoRotation* trd_feb_rotation; // rotation around x axis + TGeoTranslation* trd_feb_y_position; // shift to y position on TRD + // TGeoTranslation *trd_feb_null; // no displacement + + // replaced by matrix operation (see below) + // // Double_t yback, zback; + // // TGeoCombiTrans *trd_feb_placement; + // // // fix Z back offset 0.3 at some point + // // yback = - sin(feb_rotation_angle/180*3.141) * feb_width /2.; + // // zback = - (1-cos(feb_rotation_angle/180*3.141)) * feb_width /2. + 0.3; + // // trd_feb_placement = new TGeoCombiTrans(0, feb_pos_y + yback, zback, trd_feb_rotation); + // // trd_feb_box->AddNode(trdmod1_feb, iFeb+1, trd_feb_placement); + + // trd_feb_null = new TGeoTranslation("", 0., 0., 0.); // empty operation + trd_feb_trans1 = new TGeoTranslation("", 0., -feb_thickness / 2., + -feb_width / 2.); // move bottom right corner to center + trd_feb_trans2 = new TGeoTranslation("", 0., feb_thickness / 2., + feb_width / 2.); // move bottom right corner back + trd_feb_rotation = new TGeoRotation(); + trd_feb_rotation->RotateX(feb_rotation_angle[moduleType - 1]); + + TGeoHMatrix* incline_feb = new TGeoHMatrix(""); + + // (*incline_feb) = (*trd_feb_null); // OK + // (*incline_feb) = (*trd_feb_y_position); // OK + // (*incline_feb) = (*trd_feb_trans1); // OK + // (*incline_feb) = (*trd_feb_trans1) * (*trd_feb_y_position); // OK + // (*incline_feb) = (*trd_feb_trans1) * (*trd_feb_trans2); // OK + // (*incline_feb) = (*trd_feb_trans1) * (*trd_feb_rotation); // OK + // (*incline_feb) = (*trd_feb_trans1) * (*trd_feb_rotation) * (*trd_feb_trans2) * (*trd_feb_y_position); // not OK + // trd_feb_y_position is displaced in rotated coordinate system + + // matrix operation to rotate FEB PCB around its corner on the backanel + (*incline_feb) = (*trd_feb_trans1) * (*trd_feb_rotation) * (*trd_feb_trans2); // OK + + // Create all FEBs and place them in an assembly which will be added to the TRD module + TGeoBBox* trd_feb = new TGeoBBox("trd_feb", activeAreaX / 2., feb_thickness / 2., + feb_width / 2.); // the FEB itself - as a cuboid + TGeoVolume* trdmod1_feb = new TGeoVolume("feb", trd_feb, febVolMed); // the FEB made of a certain medium + // TGeoVolume* trdmod1_feb = new TGeoVolume(Form("module%d_feb", moduleType), trd_feb, febVolMed); // the FEB made of a certain medium + // TGeoVolume* trdmod1_feb = new TGeoVolume(Form("trd1mod%dfeb", moduleType), trd_feb, febVolMed); // the FEB made of a certain medium + trdmod1_feb->SetLineColor(kYellow); // set yellow color + trd_feb_box->AddNode(trdmod1_feb, 1, incline_feb); + // now we have an inclined FEB + + // ASICs + if (IncludeAsics) { + Double_t asic_pos; + Double_t asic_pos_x; + TGeoTranslation* trd_asic_trans0; // ASIC on FEB x position + TGeoTranslation* trd_asic_trans1; // center to corner + TGeoTranslation* trd_asic_trans2; // corner back + TGeoRotation* trd_asic_rotation; // rotation around x axis + + trd_asic_trans1 = new TGeoTranslation("", 0., -(feb_thickness + asic_offset + asic_thickness / 2.), + -feb_width / 2.); // move ASIC center to FEB corner + trd_asic_trans2 = new TGeoTranslation("", 0., feb_thickness + asic_offset + asic_thickness / 2., + feb_width / 2.); // move FEB corner back to asic center + trd_asic_rotation = new TGeoRotation(); + trd_asic_rotation->RotateX(feb_rotation_angle[moduleType - 1]); + + TGeoHMatrix* incline_asic; + + // put many ASICs on each inclined FEB + TGeoBBox* trd_asic = new TGeoBBox("trd_asic", asic_width / 2., asic_thickness / 2., + asic_width / 2.); // ASIC dimensions + // TODO: use Silicon as ASICs material + TGeoVolume* trdmod1_asic = new TGeoVolume("asic", trd_asic, asicVolMed); // the ASIC made of a certain medium + // TGeoVolume* trdmod1_asic = new TGeoVolume(Form("module%d_asic", moduleType), trd_asic, asicVolMed); // the ASIC made of a certain medium + // TGeoVolume* trdmod1_asic = new TGeoVolume(Form("trd1mod%dasic", moduleType), trd_asic, asicVolMed); // the ASIC made of a certain medium + trdmod1_asic->SetLineColor(kBlue); // set blue color for ASICs + + Int_t nofAsics = AsicsPerFeb[moduleType - 1] % 100; + Int_t groupAsics = AsicsPerFeb[moduleType - 1] / 100; // either 1 or 2 or 3 (new ultimate) + + if ((nofAsics == 16) && (activeAreaX < 60)) asic_distance = 0.0; // for 57 cm // 0.1; // for 60 cm + else + asic_distance = 0.4; + + for (Int_t iAsic = 0; iAsic < (nofAsics / groupAsics); iAsic++) { + if (groupAsics == 1) // single ASICs + { + asic_pos = + (iAsic + 0.5) / nofAsics - 0.5; // equal spacing of ASICs on the FEB, e.g. for no=3 : -1/3, 0, +1/3 + + // ASIC 1 + asic_pos_x = asic_pos * activeAreaX; + trd_asic_trans0 = new TGeoTranslation("", asic_pos_x, feb_thickness / 2. + asic_thickness / 2. + asic_offset, + 0.); // move asic on top of FEB + incline_asic = new TGeoHMatrix(""); + (*incline_asic) = (*trd_asic_trans0) * (*trd_asic_trans1) * (*trd_asic_rotation) * (*trd_asic_trans2); // OK + trd_feb_box->AddNode(trdmod1_asic, iAsic + 1, + incline_asic); // now we have ASICs on the inclined FEB + } + + if (groupAsics == 2) // pairs of ASICs + { + asic_pos = (iAsic + 0.5) / (nofAsics / groupAsics) + - 0.5; // equal spacing of ASICs on the FEB, e.g. for no=3 : -1/3, 0, +1/3 + + // ASIC 1 + asic_pos_x = asic_pos * activeAreaX + (0.5 + asic_distance / 2.) * asic_width; + trd_asic_trans0 = new TGeoTranslation("", asic_pos_x, feb_thickness / 2. + asic_thickness / 2. + asic_offset, + 0.); // move asic on top of FEB); + incline_asic = new TGeoHMatrix(""); + (*incline_asic) = (*trd_asic_trans0) * (*trd_asic_trans1) * (*trd_asic_rotation) * (*trd_asic_trans2); // OK + trd_feb_box->AddNode(trdmod1_asic, 2 * iAsic + 1, + incline_asic); // now we have ASICs on the inclined FEB + + // ASIC 2 + asic_pos_x = asic_pos * activeAreaX - (0.5 + asic_distance / 2.) * asic_width; + trd_asic_trans0 = new TGeoTranslation("", asic_pos_x, feb_thickness / 2. + asic_thickness / 2. + asic_offset, + 0.); // move asic on top of FEB + incline_asic = new TGeoHMatrix(""); + (*incline_asic) = (*trd_asic_trans0) * (*trd_asic_trans1) * (*trd_asic_rotation) * (*trd_asic_trans2); // OK + trd_feb_box->AddNode(trdmod1_asic, 2 * iAsic + 2, + incline_asic); // now we have ASICs on the inclined FEB + } + + if (groupAsics == 3) // triplets of ASICs + { + asic_pos = (iAsic + 0.5) / (nofAsics / groupAsics) + - 0.5; // equal spacing of ASICs on the FEB, e.g. for no=3 : -1/3, 0, +1/3 + + // ASIC 1 + asic_pos_x = asic_pos * activeAreaX + 1.1 * asic_width; // (0.5 + asic_distance/2.) * asic_width; + trd_asic_trans0 = new TGeoTranslation("", asic_pos_x, feb_thickness / 2. + asic_thickness / 2. + asic_offset, + 0.); // move asic on top of FEB); + incline_asic = new TGeoHMatrix(""); + (*incline_asic) = (*trd_asic_trans0) * (*trd_asic_trans1) * (*trd_asic_rotation) * (*trd_asic_trans2); // OK + trd_feb_box->AddNode(trdmod1_asic, 3 * iAsic + 1, + incline_asic); // now we have ASICs on the inclined FEB + + // ASIC 2 + asic_pos_x = asic_pos * activeAreaX; + trd_asic_trans0 = new TGeoTranslation("", asic_pos_x, feb_thickness / 2. + asic_thickness / 2. + asic_offset, + 0.); // move asic on top of FEB + incline_asic = new TGeoHMatrix(""); + (*incline_asic) = (*trd_asic_trans0) * (*trd_asic_trans1) * (*trd_asic_rotation) * (*trd_asic_trans2); // OK + trd_feb_box->AddNode(trdmod1_asic, 3 * iAsic + 2, + incline_asic); // now we have ASICs on the inclined FEB + + // ASIC 3 + asic_pos_x = asic_pos * activeAreaX - 1.1 * asic_width; // (0.5 + asic_distance/2.) * asic_width; + trd_asic_trans0 = new TGeoTranslation("", asic_pos_x, feb_thickness / 2. + asic_thickness / 2. + asic_offset, + 0.); // move asic on top of FEB + incline_asic = new TGeoHMatrix(""); + (*incline_asic) = (*trd_asic_trans0) * (*trd_asic_trans1) * (*trd_asic_rotation) * (*trd_asic_trans2); // OK + trd_feb_box->AddNode(trdmod1_asic, 3 * iAsic + 3, + incline_asic); // now we have ASICs on the inclined FEB + } + } + // now we have an inclined FEB with ASICs + } + + + // now go on with FEB placement + Double_t feb_pos; + Double_t feb_pos_y; + + Int_t nofFebs = FebsPerModule[moduleType - 1]; + for (Int_t iFeb = 0; iFeb < nofFebs; iFeb++) { + feb_pos = (iFeb + 0.5) / nofFebs - 0.5; // equal spacing of FEBs on the backpanel + // cout << "feb_pos " << iFeb << ": " << feb_pos << endl; + feb_pos_y = feb_pos * activeAreaY; + feb_pos_y += feb_width / 2. * sin(feb_rotation_angle[moduleType - 1] * acos(-1.) / 180.); + + // shift inclined FEB in y to its final position + trd_feb_y_position = new TGeoTranslation("", 0., feb_pos_y, + feb_z_offset); // with additional fixed offset in z direction + // trd_feb_y_position = new TGeoTranslation("", 0., feb_pos_y, 0.0); // touching the backpanel with the corner + trd_feb_vol->AddNode(trd_feb_box, iFeb + 1, trd_feb_y_position); // position FEB in y + } + + if (IncludeRobs) { + // GBTx ROBs + Double_t rob_size_x = 20.0; // 13.0; // 130 mm + Double_t rob_size_y = 9.0; // 4.5; // 45 mm + Double_t rob_offset = 1.2; + Double_t rob_thickness = feb_thickness; + + TGeoVolumeAssembly* trd_rob_box = + new TGeoVolumeAssembly("robbox"); // volume for inclined FEBs, then shifted along y + TGeoBBox* trd_rob = new TGeoBBox("trd_rob", rob_size_x / 2., rob_size_y / 2., + rob_thickness / 2.); // the ROB itself + TGeoVolume* trdmod1_rob = new TGeoVolume("rob", trd_rob, febVolMed); // the ROB made of a certain medium + trdmod1_rob->SetLineColor(kRed); // set color + + // TGeoHMatrix *incline_rob = new TGeoHMatrix(""); + trd_rob_box->AddNode(trdmod1_rob, 1); + + // GBTXs + Double_t gbtx_pos; + Double_t gbtx_pos_x; + Double_t gbtx_pos_y; + TGeoTranslation* trd_gbtx_trans1; // center to corner + + // GBTX parameters + const Double_t gbtx_thickness = 0.25; // 2.5 mm + const Double_t gbtx_width = 3.0; // 2.0; 1.0; // 1 cm + + // put many GBTXs on each inclined FEB + TGeoBBox* trd_gbtx = new TGeoBBox("trd_gbtx", gbtx_width / 2., gbtx_width / 2., + gbtx_thickness / 2.); // GBTX dimensions + TGeoVolume* trdmod1_gbtx = new TGeoVolume("gbtx", trd_gbtx, asicVolMed); // the GBTX made of a certain medium + trdmod1_gbtx->SetLineColor(kGreen); // set color for GBTXs + + Int_t nofGbtxs = GbtxPerRob[moduleType - 1] % 100; + Int_t groupGbtxs = GbtxPerRob[moduleType - 1] / 100; // usually 1 + + // nofGbtxs = 7; + // groupGbtxs = 1; + + Int_t nofGbtxX = (nofGbtxs - 1) / 2. + 1; // +1 is for GBTx master + Int_t nofGbtxY = 2; + + Double_t gbtx_distance = 0.4; + Int_t iGbtx = 1; + + for (Int_t iGbtxX = 0; iGbtxX < nofGbtxX; iGbtxX++) { + gbtx_pos = (iGbtxX + 0.5) / nofGbtxX - 0.5; // equal spacing of GBTXs on the FEB, e.g. for no=3 : -1/3, 0, +1/3 + gbtx_pos_x = -gbtx_pos * rob_size_x; + + if (iGbtxX > 0) + for (Int_t iGbtxY = 0; iGbtxY < nofGbtxY; iGbtxY++) { + gbtx_pos = + (iGbtxY + 0.5) / nofGbtxY - 0.5; // equal spacing of GBTXs on the FEB, e.g. for no=3 : -1/3, 0, +1/3 + gbtx_pos_y = gbtx_pos * rob_size_y; + + trd_gbtx_trans1 = new TGeoTranslation("", gbtx_pos_x, gbtx_pos_y, + rob_thickness / 2. + gbtx_thickness / 2.); // move gbtx on top of ROB + trd_rob_box->AddNode(trdmod1_gbtx, iGbtx++, + trd_gbtx_trans1); // now we have GBTXs on the ROB + } + else { + gbtx_pos_y = 0; + + trd_gbtx_trans1 = new TGeoTranslation("", gbtx_pos_x, gbtx_pos_y, + rob_thickness / 2. + gbtx_thickness / 2.); // move gbtx on top of ROB + trd_rob_box->AddNode(trdmod1_gbtx, iGbtx++, + trd_gbtx_trans1); // now we have GBTXs on the ROB + } + } + + // now go on with ROB placement + Double_t rob_pos; + Double_t rob_pos_y; + TGeoTranslation* trd_rob_y_position; // shift to y position on TRD + + Int_t nofRobs = RobsPerModule[moduleType - 1]; + for (Int_t iRob = 0; iRob < nofRobs; iRob++) { + rob_pos = (iRob + 0.5) / nofRobs - 0.5; // equal spacing of ROBs on the backpanel + rob_pos_y = rob_pos * activeAreaY; + + // shift inclined ROB in y to its final position + if (feb_rotation_angle[moduleType - 1] == 90) // if FEB parallel to backpanel + trd_rob_y_position = new TGeoTranslation("", 0., rob_pos_y, + -feb_width / 2. + rob_offset); // place ROBs close to FEBs + else { + // Int_t rob_z_pos = 0.; // test where ROB is placed by default + Int_t rob_z_pos = + -feb_width / 2. + feb_width * cos(feb_rotation_angle[moduleType - 1] * acos(-1.) / 180.) + rob_offset; + if (rob_z_pos > feb_width / 2.) // if the rob is too far out + { + rob_z_pos = feb_width / 2. - rob_thickness; // place ROBs at end of feb volume + std::cout << "GBTx ROB was outside of the FEB volume, check " + "overlap with FEB" + << std::endl; + } + trd_rob_y_position = new TGeoTranslation("", 0., rob_pos_y, rob_z_pos); + } + trd_feb_vol->AddNode(trd_rob_box, iRob + 1, trd_rob_y_position); // position FEB in y + } + + } // IncludeGbtx + + // put FEB box on module + TGeoTranslation* trd_febvolume_trans = new TGeoTranslation("", 0., 0., febvolume_position); + gGeoMan->GetVolume(name)->AddNode(trd_feb_vol, 1, + trd_febvolume_trans); // put febvolume at correct z position wrt to the module + } + + // DE123 + + return module; +} + +//________________________________________________________________________________________________ +// TRD Bucharest module definition +TGeoTranslation* tr(NULL); +TString sexpr; +void addFlatCableHoles(const Char_t* name) +{ + printf("addFlatCableHoles(%s)\n", name); + sexpr = name; + sexpr += "_bd"; + for (Int_t c(0); c < 9; c++) { + printf("c[%d]\n", c); + for (Int_t r(0); r < 10; r++) { + printf("r[%d]\n", r); + tr = new TGeoTranslation(Form("t%s%d%02d", name, c, r), (c - 4) * 6, 1.35 + 2.7 * r, 0.); + tr->RegisterYourself(); + sexpr += Form("-%s_fc:t%s%d%02d", name, name, c, r); + } + for (Int_t r(10); r < 20; r++) { + printf("r[%d]\n", r); + tr = new TGeoTranslation(Form("t%s%d%02d", name, c, r), (c - 4) * 6, -1.35 - 2.7 * (r - 10), 0.); + tr->RegisterYourself(); + sexpr += Form("-%s_fc:t%s%d%02d", name, name, c, r); + } + } +} +TGeoVolume* create_trd2d_module_type(Int_t moduleType) +{ + Info("create_trd2d_module_type", "Bulding Bucharest Module [%s].", moduleType == 9 ? "TRD2D" : "TRD-2DH"); + Int_t detTypeIdx = moduleType == 9 ? 2 : 3; + Double_t sizeX = DetectorSizeX[detTypeIdx]; + Double_t sizeY = DetectorSizeY[detTypeIdx]; + Double_t frameWidth = FrameWidth[detTypeIdx]; + Double_t activeAreaX = sizeX - 2 * frameWidth; + Double_t activeAreaY = sizeY - 2 * frameWidth; + + TGeoMedium* keepVolMed = gGeoMan->GetMedium(KeepingVolumeMedium); + TGeoMedium* radVolMed = gGeoMan->GetMedium(RadiatorVolumeMedium); + TGeoMedium* latticeVolMed = gGeoMan->GetMedium(LatticeVolumeMedium); + TGeoMedium* kaptonVolMed = gGeoMan->GetMedium(KaptonVolumeMedium); + TGeoMedium* gasVolMed = gGeoMan->GetMedium(GasVolumeMedium); + TGeoMedium* padcopperVolMed = gGeoMan->GetMedium(PadCopperVolumeMedium); + TGeoMedium* padpcbVolMed = gGeoMan->GetMedium(PadPcbVolumeMedium); + TGeoMedium* honeycombVolMed = gGeoMan->GetMedium(HoneycombVolumeMedium); + TGeoMedium* carbonVolMed = gGeoMan->GetMedium(CarbonVolumeMedium); + // TGeoMedium* mylarVolMed = gGeoMan->GetMedium(MylarVolumeMedium); + // TGeoMedium* electronicsVolMed = gGeoMan->GetMedium(ElectronicsVolumeMedium); + TGeoMedium* frameVolMed = gGeoMan->GetMedium(FrameVolumeMedium); + TGeoMedium* febVolMed = gGeoMan->GetMedium(FebVolumeMedium); + TGeoMedium* asicVolMed = gGeoMan->GetMedium(AsicVolumeMedium); + TGeoMedium* aluminiumVolMed = gGeoMan->GetMedium(AluminiumVolumeMedium); + + TString name = Form("module%d", moduleType); + TGeoVolume* module = new TGeoVolumeAssembly(name); + + + if (IncludeRadiator) { // Radiator + TGeoBBox* trd_radiator = new TGeoBBox("trd_radiator", sizeX / 2., sizeY / 2., radiator_thickness / 2.); + TGeoVolume* trdmod1_radvol = new TGeoVolume("Radiator", trd_radiator, radVolMed); + trdmod1_radvol->SetLineColor(kRed); + trdmod1_radvol->SetTransparency(50); // (60); // (70); // set transparency for the TRD radiator + TGeoTranslation* trd_radiator_trans = new TGeoTranslation("", 0., 0., radiator_position); + module->AddNode(trdmod1_radvol, 1, trd_radiator_trans); + } + + Double_t winIn_C_thickness = 0.02; + Double_t winIn_HC_thickness = 1.; + Double_t winIn_thickness = winIn_HC_thickness + /*2**/ winIn_C_thickness; + if (IncludeLattice) { // Entrance window in the case of the Bucharest prototype + Info("create_trd2d_module_type", "make entrance widow ..."); + // Carbon fiber layers + TGeoBBox* winIn_C = new TGeoBBox("winIn_C", 0.3 + activeAreaX / 2., 0.9 + activeAreaY / 2., winIn_C_thickness / 2.); + TGeoVolume* vol_winIn_C = new TGeoVolume("vol_winIn_C", winIn_C, carbonVolMed); + vol_winIn_C->SetLineColor(kGray); + // Honeycomb layer + TGeoBBox* winIn_HC = + new TGeoBBox("winIn_HC", -0.3 + activeAreaX / 2., 0.3 + activeAreaY / 2., winIn_HC_thickness / 2.); + TGeoVolume* vol_winIn_HC = new TGeoVolume("vol_winIn_HC", winIn_HC, honeycombVolMed); + vol_winIn_HC->SetLineColor(kOrange); + // framex + TGeoBBox* winIn_fx = + new TGeoBBox("winIn_fx", -0.3 + activeAreaX / 2, WIN_Frame_thickness / 2, winIn_HC_thickness / 2.); + TGeoVolume* vol_winIn_fx = new TGeoVolume("vol_winIn_fx", winIn_fx, frameVolMed); + vol_winIn_fx->SetLineColor(kBlue); + // framey + TGeoBBox* winIn_fy = + new TGeoBBox("winIn_fy", WIN_Frame_thickness / 2, (1.8 + activeAreaY) / 2, winIn_HC_thickness / 2.); + TGeoVolume* vol_winIn_fy = new TGeoVolume("vol_winIn_fy", winIn_fy, frameVolMed); + vol_winIn_fy->SetLineColor(kCyan); + // Add up all components + TGeoVolumeAssembly* trd_win_in = new TGeoVolumeAssembly("EntranceWin"); + trd_win_in->AddNode(vol_winIn_fx, 1, new TGeoTranslation("", 0., 0.6 + activeAreaY / 2., 0)); + trd_win_in->AddNode(vol_winIn_fx, 2, new TGeoTranslation("", 0., -(activeAreaY / 2. + 0.6), 0)); + trd_win_in->AddNode(vol_winIn_fy, 1, new TGeoTranslation("", activeAreaX / 2., 0., 0)); + trd_win_in->AddNode(vol_winIn_fy, 2, new TGeoTranslation("", -activeAreaX / 2., 0., 0)); + + trd_win_in->AddNode(vol_winIn_HC, 1); + trd_win_in->AddNode(vol_winIn_C, 1, + new TGeoTranslation("", 0., 0., 0.5 * (winIn_HC_thickness + winIn_C_thickness))); + // trd_win_in->AddNode(vol_winIn_C, 2, + // new TGeoTranslation("", 0., 0., -(winIn_thickness-winIn_C_thickness)/2.)); + module->AddNode(trd_win_in, 1, + new TGeoTranslation( + "", 0., 0., gasBu_position - gas_thickness / 2. - winIn_C_thickness - winIn_HC_thickness / 2.)); + } + + // Gas. The volume has to be defined only for pads (read-out) area. Take care in the DigiPara definition + TGeoBBox* trd_gas = new TGeoBBox("trd_gas", 0.5 * activeAreaX, 0.5 * activeAreaY, 0.5 * gas_thickness); + TGeoVolume* vol_gas = new TGeoVolume("gas", trd_gas, gasVolMed); + vol_gas->SetLineColor(kRed + 3); //trdmod1_gasvol->SetTransparency(40); + TGeoBBox* trd_gas_dstr = new TGeoBBox("trd_gas_dstr", 0.5 * activeAreaX, 0.2, 0.5 * gas_thickness); + TGeoVolume* vol_gas_dstr = new TGeoVolume("inlet", trd_gas_dstr, gasVolMed); + vol_gas_dstr->SetLineColor(kRed); + module->AddNode(vol_gas, 0, new TGeoTranslation("", 0., 0., gasBu_position)); + module->AddNode(vol_gas_dstr, 0, new TGeoTranslation("", 0., 0.5 * activeAreaY + 0.2, gasBu_position)); + module->AddNode(vol_gas_dstr, 1, new TGeoTranslation("", 0., -0.5 * activeAreaY - 0.2, gasBu_position)); + + const Double_t pp_pads_thickness = 0.0025; + const Double_t pp_pcb_thickness = 0.0360; + const Double_t pp_hc_thickness = 0.2; + const Double_t pp_c_thickness = 0.05; + const Double_t pp_thickness = /*pp_pads_thickness + */ pp_pcb_thickness + pp_hc_thickness + pp_c_thickness; + if (IncludePadplane) { + const Char_t* ppn = (detTypeIdx == 2 ? "pp" : "pph"); + Info("create_trd2d_module_type", "make pad-plane ..."); + // Pad Copper + TGeoBBox* trd_pp = new TGeoBBox(Form("%s_cu", ppn), activeAreaX / 2., activeAreaY / 2., pp_pads_thickness / 2.); + TGeoVolume* vol_trd_pp = new TGeoVolume(Form("vol_%s_cu", ppn), trd_pp, padcopperVolMed); + vol_trd_pp->SetLineColor(kRed); + // Pad Plane + TGeoBBox* trd_ppPCB = + new TGeoBBox(Form("%s_pcb", ppn), 1.0 + activeAreaX / 2., 0.9 + activeAreaY / 2., pp_pcb_thickness / 2.); + TGeoVolume* vol_trd_ppPCB = new TGeoVolume(Form("vol_%s_pcb", ppn), trd_ppPCB, padpcbVolMed); + vol_trd_ppPCB->SetLineColor(kGreen); + // Pad Plane HC + TGeoBBox* trd_ppHC_bd = + new TGeoBBox(Form("%s_hc_bd", ppn), 1.0 + activeAreaX / 2., 0.9 + activeAreaY / 2., pp_hc_thickness / 2.); + TGeoBBox* trd_ppHC_fc = new TGeoBBox(Form("%s_hc_fc", ppn), 2.4 / 2., 0.8 / 2., (1.e-4 + pp_hc_thickness) / 2.); + //if(detTypeIdx==2) addFlatCableHoles(Form("%s_hc", ppn)); + TGeoCompositeShape* trd_ppHC = new TGeoCompositeShape(Form("%s_hc", ppn), sexpr.Data()); + TGeoVolume* vol_trd_ppHC = new TGeoVolume(Form("vol_%s_hc", ppn), trd_ppHC, honeycombVolMed); + vol_trd_ppHC->SetLineColor(kOrange); + // Pad Plane C fiber + TGeoBBox* trd_ppC_bd = + new TGeoBBox(Form("%s_c_bd", ppn), 1.0 + activeAreaX / 2., 0.9 + activeAreaY / 2., pp_c_thickness / 2.); + TGeoBBox* trd_ppC_fc = new TGeoBBox(Form("%s_c_fc", ppn), 2.4 / 2., 0.8 / 2., (1.e-4 + pp_c_thickness) / 2.); + //if(detTypeIdx==2) addFlatCableHoles(Form("%s_c", ppn)); + TGeoCompositeShape* trd_ppC = new TGeoCompositeShape(Form("%s_c", ppn), sexpr.Data()); + TGeoVolume* vol_trd_ppC = new TGeoVolume(Form("vol_%s_c", ppn), trd_ppC, carbonVolMed); + vol_trd_ppC->SetLineColor(kGray); + + // Add up all components + TGeoVolumeAssembly* vol_pp = new TGeoVolumeAssembly("PadPlane"); + vol_pp->AddNode(vol_trd_pp, 1, new TGeoTranslation("", 0., 0., -pp_thickness / 2 - pp_pads_thickness / 2)); + vol_pp->AddNode(vol_trd_ppPCB, 1, new TGeoTranslation("", 0., 0., -pp_thickness / 2 + pp_pcb_thickness / 2)); + vol_pp->AddNode(vol_trd_ppHC, 1, + new TGeoTranslation("", 0., 0., -pp_thickness / 2 + pp_pcb_thickness + pp_hc_thickness / 2)); + vol_pp->AddNode(vol_trd_ppC, 1, new TGeoTranslation("", 0., 0., pp_thickness / 2 - pp_c_thickness / 2)); + module->AddNode(vol_pp, 1, + new TGeoTranslation("", 0., 0., gasBu_position + gas_thickness / 2. + pp_thickness / 2.)); + } + + + if (IncludeGasFrame) { + Info("create_trd2d_module_type", "make gas frame ..."); + // framex + TGeoBBox* frame_fx0 = new TGeoBBox("frame_fx0", activeAreaX / 2., 0.5 / 2., gas_thickness / 2.); + TGeoVolume* vol_frame_fx0 = new TGeoVolume("vol_frame_fx0", frame_fx0, frameVolMed); + vol_frame_fx0->SetLineColor(kYellow - 2); + Double_t frame_fx1_thickness = winIn_thickness + gas_thickness + pp_thickness; + TGeoBBox* frame_fx1 = new TGeoBBox("frame_fx1", 1. + activeAreaX / 2., 0.3 / 2., frame_fx1_thickness / 2.); + TGeoVolume* vol_frame_fx1 = new TGeoVolume("vol_frame_fx1", frame_fx1, frameVolMed); + vol_frame_fx1->SetLineColor(kViolet); //vol_frame_fx1->SetTransparency(50); + + // framey + TGeoBBox* frame_fy_0 = new TGeoBBox("frame_fy_0", 0.7 / 2., (1.8 + activeAreaY) / 2., winIn_thickness / 2.); + TGeoVolume* vol_frame_fy_0 = new TGeoVolume("vol_frame_fy_0", frame_fy_0, frameVolMed); + vol_frame_fy_0->SetLineColor(kBlue); + TGeoBBox* frame_fy_1 = + new TGeoBBox("frame_fy_1", 1.0 / 2., (1.8 + activeAreaY) / 2., 0.4 / 2.); // catode wire support + TGeoVolume* vol_frame_fy_1 = new TGeoVolume("vol_frame_fy_1", frame_fy_1, frameVolMed); + vol_frame_fy_1->SetLineColor(kBlue - 3); + TGeoBBox* frame_fy_2 = + new TGeoBBox("frame_fy_2", 0.7 / 2., (1.8 + activeAreaY) / 2., 0.4 / 2.); // anode wire support + TGeoVolume* vol_frame_fy_2 = new TGeoVolume("vol_frame_fy_2", frame_fy_2, frameVolMed); + vol_frame_fy_2->SetLineColor(kOrange + 4); + TGeoBBox* frame_fy_3 = + new TGeoBBox("frame_fy_3", 0.4 / 2., (1.8 + activeAreaY) / 2., 0.4 / 2.); // pad-plane support + TGeoVolume* vol_frame_fy_3 = new TGeoVolume("vol_frame_fy_3", frame_fy_3, frameVolMed); + vol_frame_fy_3->SetLineColor(kYellow + 3); + // add up framey components + TGeoVolumeAssembly* vol_frame_fy0 = + new TGeoVolumeAssembly("vol_frame_fy0"); // the mother volume of wire support ledge + vol_frame_fy0->AddNode(vol_frame_fy_0, 1, + new TGeoTranslation("", -0.3 - 0.7 / 2., 0., -(0.4 * 1.5 + winIn_thickness / 2.))); + vol_frame_fy0->AddNode(vol_frame_fy_1, 1, new TGeoTranslation("", -1.0 / 2., 0., -0.4)); + vol_frame_fy0->AddNode(vol_frame_fy_2, 1, new TGeoTranslation("", -0.7 / 2., 0., 0.)); + vol_frame_fy0->AddNode(vol_frame_fy_3, 1, new TGeoTranslation("", -0.4 / 2., 0., 0.4)); + TGeoBBox* frame_fy1 = new TGeoBBox("frame_fy1", 0.3 / 2., 1.2 + activeAreaY / 2., frame_fx1_thickness / 2.); + TGeoVolume* vol_frame_fy1 = new TGeoVolume("vol_frame_fy1", frame_fy1, frameVolMed); + vol_frame_fy1->SetLineColor(kViolet + 2); //vol_frame_fy1->SetTransparency(50); + + // Add up all frames + Double_t frame_fx1_position = -winIn_thickness - gas_thickness / 2. + frame_fx1_thickness / 2.; + TGeoVolumeAssembly* trd_gas_frame = new TGeoVolumeAssembly("Frame"); // the mother volume of gas frame + trd_gas_frame->AddNode(vol_frame_fx0, 1, new TGeoTranslation("", 0., activeAreaY / 2. + 0.4 + 0.5 / 2, 0)); + trd_gas_frame->AddNode(vol_frame_fx0, 2, new TGeoTranslation("", 0., -(activeAreaY / 2. + 0.4 + 0.5 / 2), 0)); + trd_gas_frame->AddNode(vol_frame_fx1, 1, + new TGeoTranslation("", 0., activeAreaY / 2. + 0.4 + 0.5 + 0.3 / 2, frame_fx1_position)); + trd_gas_frame->AddNode(vol_frame_fx1, 2, + new TGeoTranslation("", 0., -(activeAreaY / 2. + 0.4 + 0.5 + 0.3 / 2), frame_fx1_position)); + + trd_gas_frame->AddNode(vol_frame_fy0, 1, new TGeoTranslation("", -activeAreaX / 2., 0., 0)); + TGeoRotation* fy_rot = new TGeoRotation(); + fy_rot->RotateZ(180.); + TGeoTranslation* fy_tra = new TGeoTranslation("", -activeAreaX / 2., 0., 0); + TGeoHMatrix* fy_transform = new TGeoHMatrix(""); + (*fy_transform) = (*fy_rot) * (*fy_tra); + trd_gas_frame->AddNode(vol_frame_fy0, 2, fy_transform); + trd_gas_frame->AddNode(vol_frame_fy1, 1, + new TGeoTranslation("", activeAreaX / 2. + 1.0 + 0.3 / 2, 0, frame_fx1_position)); + trd_gas_frame->AddNode(vol_frame_fy1, 2, + new TGeoTranslation("", -(activeAreaX / 2. + 1.0 + 0.3 / 2), 0, frame_fx1_position)); + + // add Al reinforcements on the edges of the gas frame + if (moduleType == 9) { + // y direction + TGeoBBox* frame_al_y0 = new TGeoBBox("frame_al_y0", 0.4 / 2., (sizeY - 1.4) / 2., 1.8 / 2.); + TGeoVolume* vol_frame_al_y0 = new TGeoVolume("vol_frame_al_y0", frame_al_y0, aluminiumVolMed); + trd_gas_frame->AddNode(vol_frame_al_y0, 1, new TGeoTranslation("", -0.5 * (sizeX + 0.2) + 1.1, 0, -1)); + trd_gas_frame->AddNode(vol_frame_al_y0, 2, new TGeoTranslation("", +0.5 * (sizeX + 0.2) - 1.1, 0, -1)); + // + TGeoBBox* frame_al_y1 = new TGeoBBox("frame_al_y1", 2.5 / 2., (sizeY - 1.4) / 2., 0.4 / 2.); + TGeoVolume* vol_frame_al_y1 = new TGeoVolume("vol_frame_al_y1", frame_al_y1, aluminiumVolMed); + trd_gas_frame->AddNode(vol_frame_al_y1, 1, new TGeoTranslation("", -0.5 * sizeX - 0.4, 0, -0.3)); + trd_gas_frame->AddNode(vol_frame_al_y1, 2, new TGeoTranslation("", +0.5 * sizeX + 0.4, 0, -0.3)); + // connector to frame + TGeoBBox* frame_al_y2 = new TGeoBBox("frame_al_y2", 2.5 / 2., (sizeY + 5) / 2., 0.8 / 2.); + TGeoVolume* vol_frame_al_y2 = new TGeoVolume("vol_frame_al_y2", frame_al_y2, aluminiumVolMed); + trd_gas_frame->AddNode(vol_frame_al_y2, 1, new TGeoTranslation("", -0.5 * sizeX - 0.4, 0, -0.9)); + trd_gas_frame->AddNode(vol_frame_al_y2, 2, new TGeoTranslation("", +0.5 * sizeX + 0.4, 0, -0.9)); + // x direction + TGeoBBox* frame_al_x0 = new TGeoBBox("frame_al_x0", (sizeX - 2.4) / 2., 0.3 / 2, 2.5 / 2.); + TGeoVolume* vol_frame_al_x0 = new TGeoVolume("vol_frame_al_x0", frame_al_x0, aluminiumVolMed); + trd_gas_frame->AddNode(vol_frame_al_x0, 1, new TGeoTranslation("", 0, -0.5 * (sizeY + 0.15) + 1.2, 0)); + trd_gas_frame->AddNode(vol_frame_al_x0, 2, new TGeoTranslation("", 0, +0.5 * (sizeY + 0.15) - 1.2, 0)); + // ==== + TGeoBBox* frame_al_x1 = new TGeoBBox("frame_al_x1", (sizeX - 2.4) / 2., 0.3 / 2, 2.5 / 2.); + TGeoVolume* vol_frame_al_x1 = new TGeoVolume("vol_frame_al_x1", frame_al_x1, aluminiumVolMed); + trd_gas_frame->AddNode(vol_frame_al_x1, 1, new TGeoTranslation("", 0, -0.5 * (sizeY + 0.15) + 1.2, -0.5)); + trd_gas_frame->AddNode(vol_frame_al_x1, 2, new TGeoTranslation("", 0, +0.5 * (sizeY + 0.15) - 1.2, -0.5)); + } + + module->AddNode(trd_gas_frame, 1, new TGeoTranslation("", 0., 0., gasBu_position)); + } + + + const Double_t bp_hc_thickness = 2.; + const Double_t bp_pcb_thickness = 0.05; + const Double_t bp_cu_thickness = 0.003; + const Double_t bp_thickness = bp_cu_thickness + bp_hc_thickness + bp_pcb_thickness; + const Double_t bp_position = gasBu_position + 0.5 * gas_thickness + pp_thickness; + if (IncludeBackpanel) { + Info("create_trd2d_module_type", "make backpanel ..."); + // Honeycomb board and flat-cable hole + TGeoBBox* bp_hc_bd = new TGeoBBox("bp_hc_bd", activeAreaX / 2., activeAreaY / 2., bp_hc_thickness / 2.); + TGeoBBox* bp_hc_fc = new TGeoBBox("bp_hc_fc", 2.4 / 2., 0.8 / 2., (1.e-4 + bp_hc_thickness) / 2.); + //if(detTypeIdx==2) addFlatCableHoles("bp_hc"); + TGeoCompositeShape* bp_hc = new TGeoCompositeShape("bp_hc", sexpr.Data()); + TGeoVolume* vol_bp_hc = new TGeoVolume(".vol_bp_hc", bp_hc_bd, honeycombVolMed); + vol_bp_hc->SetLineColor(kOrange); + // Screen fibre-glass support (PCB) + TGeoBBox* bp_pcb_bd = + new TGeoBBox("bp_pcb_bd", 0.5 + activeAreaX / 2., 0.5 + activeAreaY / 2., bp_pcb_thickness / 2.); + TGeoBBox* bp_pcb_fc = new TGeoBBox("bp_pcb_fc", 2.4 / 2., 0.8 / 2., (1.e-3 + bp_pcb_thickness) / 2.); + //if(detTypeIdx==2) addFlatCableHoles("bp_pcb"); + TGeoCompositeShape* bp_pcb = new TGeoCompositeShape("bp_pcb", sexpr.Data()); + TGeoVolume* vol_bp_pcb = new TGeoVolume("vol_bp_pcb", bp_pcb, padpcbVolMed); + vol_bp_pcb->SetLineColor(kGreen); + // Pad Copper + TGeoBBox* bp_cu_bd = new TGeoBBox("bp_cu_bd", 0.5 + activeAreaX / 2., 0.5 + activeAreaY / 2., bp_cu_thickness / 2.); + TGeoBBox* bp_cu_fc = new TGeoBBox("bp_cu_fc", 2.4 / 2., 0.8 / 2., (1.e-3 + bp_cu_thickness) / 2.); + //if(detTypeIdx==2) addFlatCableHoles("bp_cu"); + TGeoCompositeShape* bp_cu = new TGeoCompositeShape("bp_cu", sexpr.Data()); + TGeoVolume* vol_bp_cu = new TGeoVolume("vol_bp_cu", bp_cu, padcopperVolMed); + vol_bp_cu->SetLineColor(kRed); + + TGeoBBox* bp_fx = new TGeoBBox("bp_fx", activeAreaX / 2., 0.5 / 2., bp_hc_thickness / 2.); + TGeoVolume* vol_bp_fx = new TGeoVolume("vol_bp_fx", bp_fx, frameVolMed); + vol_bp_fx->SetLineColor(kViolet); //vol_gas_fx1->SetTransparency(50); + TGeoBBox* bp_fy = new TGeoBBox("bp_fy", 0.5 / 2, 0.5 + 0.5 * activeAreaY, bp_hc_thickness / 2.); + TGeoVolume* vol_bp_fy = new TGeoVolume("vol_bp_fy", bp_fy, frameVolMed); + vol_bp_fy->SetLineColor(kViolet + 2); + + // Add up all components + TGeoVolumeAssembly* trd_supp = new TGeoVolumeAssembly("BackPanel"); + trd_supp->AddNode(vol_bp_hc, 1); + trd_supp->AddNode(vol_bp_pcb, 1, new TGeoTranslation("", 0., 0., 0.5 * (bp_hc_thickness + bp_pcb_thickness))); + trd_supp->AddNode( + vol_bp_cu, 1, new TGeoTranslation("", 0., 0., 0.5 * (bp_hc_thickness + 2 * bp_pcb_thickness + bp_cu_thickness))); + trd_supp->AddNode(vol_bp_fx, 1, new TGeoTranslation("", 0., 0.5 * (0.5 + activeAreaY), 0)); + trd_supp->AddNode(vol_bp_fx, 2, new TGeoTranslation("", 0., -0.5 * (0.5 + activeAreaY), 0)); + trd_supp->AddNode(vol_bp_fy, 1, new TGeoTranslation("", 0.5 * (0.5 + activeAreaX), 0., 0.)); + trd_supp->AddNode(vol_bp_fy, 2, new TGeoTranslation("", -0.5 * (0.5 + activeAreaX), 0., 0.)); + module->AddNode( + trd_supp, 1, + new TGeoTranslation("", 0., 0., gasBu_position + 0.5 * gas_thickness + pp_thickness + 0.5 * bp_hc_thickness)); + } + + // FEBs + // ROB FASP + const Double_t FASPRO_zspace = 1.5; // gap size between boards + const Double_t FASPRO_length = 17.9; // length of FASP FEBs in cm + const Double_t FASPRO_width = 5.12; // width of FASP FEBs in cm + const Double_t FASPRO_dx = 0.01; // + const Double_t FASPRO_dy = 0.28; // + const Double_t FASPRO_thickness = 0.17; + const Double_t FASPRO_position = bp_position + bp_thickness + FASPRO_zspace; + const Double_t GETS_length = 13.9; // length of PolarFire FEBs in cm + const Double_t GETS_width = 5.12; // width of PolarFire FEBs in cm + const Double_t GETS_thickness = 0.2; + const Double_t GA01_length = 5.; // length of LV FEBs in cm + const Double_t GA01_width = 5.1; // width of LV FEBs in cm + const Double_t GA01_thickness = 0.2; + + // ASIC parameters + const Double_t fasp_size[] = {1.2, 1.2, 0.2}; // FASP package and interposer size 1.5x1.5 cm2 + const Double_t faspConn_size[] = {2.1, 0.3, 0.6}; // FASP package and interposer size 1.5x1.5 cm2 + const Double_t fasp_xoffset = 6.0; // ASIC offset from ROC middle (horizontally) + const Double_t fasp_yoffset = 1.35; // ASIC offset from DET connector (vertical) + const Double_t fpga_size[] = {1.2, 1.2, 0.2}; // PolarFire FPGA package size 1.5x1.5 cm2 + // FMC+ connector definition + const Double_t FMCwidth = 2.0; // width of a MF FMC connector + const Double_t FMClength = 5.6; // length of a MF FMC connector + const Double_t FMCheight = 1.13; // height of a MF FMC connector + const Double_t FMCsuppD = 0.8; // outer radius of FMC connector side supports + const Double_t FMCsuppX = 0.6; // FMC connector side supports + // GETS2C-ROB3 connector boord parameters + const Double_t robConn_size_x = 3.9; //15.0; + const Double_t robConn_size_y = 15.0; + // const Double_t robConn_xoffset = 6.0; + // SATA+ connector definition + const Double_t SATAwidth = 0.7; // width of a SATA connector on GA01 + const Double_t SATAlength = 1.7; // length of a SATA connector on GA01 + const Double_t SATAheight = 0.8; // height of a SATA connector on GA01 + // GA01 connector definition + const Double_t BGAwidth = 0.4; // width of a GETS to GA01 connector + const Double_t BGAlength = 4.5; // length of a GETS to GA01 connector + const Double_t BGAheight = 0.8; // height of a GETS to GA01 connector + if (IncludeFebs) { + Info("create_trd2d_module_type", "make FEBs ..."); + + // Create all FEBs and place them in an assembly which will be added to the TRD module + // FASPRO board + TGeoBBox* faspro_bd = new TGeoBBox("faspro_bd", FASPRO_length / 2., FASPRO_width / 2., FASPRO_thickness / 2.); + TGeoVolume* vol_faspro_bd = new TGeoVolume("vol_faspro_bd", faspro_bd, febVolMed); + vol_faspro_bd->SetLineColor(kGreen + 3); //vol_faspro_bd->SetTransparency(50); + // GETS board + TGeoBBox* gets_bd = new TGeoBBox("gets_bd", GETS_length / 2., GETS_width / 2., GETS_thickness / 2.); + TGeoVolume* vol_gets_bd = new TGeoVolume("vol_gets_bd", gets_bd, febVolMed); + vol_gets_bd->SetLineColor(kGreen + 3); //vol_gets_bd->SetTransparency(50); + // GA01 board + TGeoBBox* ga01_bd = new TGeoBBox("ga01_bd", GA01_length / 2., GA01_width / 2., GA01_thickness / 2.); + TGeoVolume* vol_ga01_bd = new TGeoVolume("vol_ga01_bd", ga01_bd, febVolMed); + vol_ga01_bd->SetLineColor(kGreen + 7); //vol_gets_bd->SetTransparency(50); + + // Create connectors + // FMC connector + TGeoBBox* fmc_conn = new TGeoBBox("fmc_conn", 0.5 * FMClength, 0.5 * FMCwidth, 0.5 * FMCheight); + TGeoVolume* vol_fmc_conn = new TGeoVolume("vol_fmc_conn", fmc_conn, febVolMed); + vol_fmc_conn->SetLineColor(kGray + 2); + TGeoTube* fmc_connSupp = new TGeoTube("fmc_connSupp", 0, 0.5 * FMCsuppD, 0.5 * FMCheight); + TGeoVolume* vol_fmc_connSupp = new TGeoVolume("vol_fmc_connSupp", fmc_connSupp, aluminiumVolMed); // support Al + vol_fmc_connSupp->SetLineColor(kGray); + TGeoVolumeAssembly* fmc_connect = new TGeoVolumeAssembly("FMC"); + fmc_connect->AddNode(vol_fmc_conn, 1); + fmc_connect->AddNode(vol_fmc_connSupp, 1, new TGeoTranslation("", 0.5 * FMClength + FMCsuppX, 0, 0.)); + fmc_connect->AddNode(vol_fmc_connSupp, 2, new TGeoTranslation("", -(0.5 * FMClength + FMCsuppX), 0, 0.)); + // SATA connectors + TGeoBBox* sata_conn = new TGeoBBox("sata_conn", 0.5 * SATAwidth, 0.5 * SATAlength, 0.5 * SATAheight); + TGeoVolume* vol_sata_conn = new TGeoVolume("vol_sata_conn", sata_conn, febVolMed); + vol_sata_conn->SetLineColor(kGray + 2); + // BGA connectors + TGeoBBox* bga_conn = new TGeoBBox("bga_conn", 0.5 * BGAwidth, 0.5 * BGAlength, 0.5 * BGAheight); + TGeoVolume* vol_bga_conn = new TGeoVolume("vol_bga_conn", bga_conn, febVolMed); + vol_bga_conn->SetLineColor(kGray + 2); + + // Create GA01 board + TGeoVolumeAssembly* ga01 = new TGeoVolumeAssembly("GA01"); + ga01->AddNode(vol_ga01_bd, 1); + Float_t sataConnPosX[] = {2, 1.2, -1.}, sataConnPosY[] = {0, 1.5, 1}; + for (Int_t ic(-2); ic <= 2; ic++) { + ga01->AddNode(vol_sata_conn, ic + 2, + new TGeoTranslation("", sataConnPosX[abs(ic)], (ic > 0 ? 1 : -1) * sataConnPosY[abs(ic)], + 0.5 * (GA01_thickness + SATAheight))); + } + ga01->AddNode(vol_bga_conn, 1, + new TGeoTranslation("", -0.5 * GA01_length + 0.5, 0, -0.5 * (GA01_thickness + BGAheight))); + + // Add up all elements of FASPRO + TGeoVolumeAssembly* faspro = new TGeoVolumeAssembly("FASPRO"); + faspro->AddNode(vol_faspro_bd, 1); + faspro->AddNode(fmc_connect, 0, new TGeoTranslation("", 0, 0, 0.5 * FMCheight + 0.5 * FASPRO_thickness)); + Double_t GETS_zpos = 0.5 * FASPRO_thickness + FMCheight + 0.5 * GETS_thickness; + faspro->AddNode(vol_gets_bd, 1, new TGeoTranslation("", 0, 0, GETS_zpos)); + Double_t GA01_zpos = GETS_zpos + 0.5 * GETS_thickness + BGAheight + 0.5 * GA01_thickness; + faspro->AddNode(ga01, 1, new TGeoTranslation("", 0.5 * GETS_length + 0.5 * GA01_length - 1., 0, GA01_zpos)); + + // ASICs + if (IncludeAsics) { + Info("create_trd2d_module_type", "make ASICs ..."); + TGeoBBox* fasp_asic = new TGeoBBox("fasp_asic", 0.5 * fasp_size[0], 0.5 * fasp_size[1], 0.5 * fasp_size[2]); + TGeoVolume* vol_fasp_asic = new TGeoVolume("FASP", fasp_asic, padpcbVolMed); + vol_fasp_asic->SetLineColor(kBlack); + TGeoBBox* fasp_conn = + new TGeoBBox("fasp_conn", 0.5 * faspConn_size[0], 0.5 * faspConn_size[1], 0.5 * faspConn_size[2]); + TGeoVolume* vol_fasp_conn = new TGeoVolume("fasp_conn", fasp_conn, padpcbVolMed); + vol_fasp_conn->SetLineColor(kRed + 4); + for (Int_t cAsic(-1), iAsic(0); cAsic <= 1; cAsic++) { + faspro->AddNode(vol_fasp_asic, iAsic, + new TGeoTranslation("", cAsic * fasp_xoffset, fasp_yoffset, + -1 * (0.5 * FASPRO_thickness + 0.5 * fasp_size[2]))); + faspro->AddNode(vol_fasp_conn, iAsic, + new TGeoTranslation("", cAsic * fasp_xoffset, 0.5 * FASPRO_width - 0.2 - 0.5 * faspConn_size[1], + -1 * (0.5 * FASPRO_thickness + 0.5 * faspConn_size[2]))); + iAsic++; + faspro->AddNode(vol_fasp_asic, iAsic, + new TGeoTranslation("", cAsic * fasp_xoffset, -fasp_yoffset, + -1 * (0.5 * FASPRO_thickness + 0.5 * fasp_size[2]))); + faspro->AddNode(vol_fasp_conn, iAsic, + new TGeoTranslation("", cAsic * fasp_xoffset, + -(0.5 * FASPRO_width - 0.2 - 0.5 * faspConn_size[1]), + -1 * (0.5 * FASPRO_thickness + 0.5 * faspConn_size[2]))); + iAsic++; + } + + TGeoBBox* fpga_asic = new TGeoBBox("fpga_asic", 0.5 * fpga_size[0], 0.5 * fpga_size[1], 0.5 * fpga_size[2]); + TGeoVolume* vol_fpga_asic = new TGeoVolume("FPGA", fpga_asic, asicVolMed); + vol_fpga_asic->SetLineColor(kBlack); + faspro->AddNode(vol_fpga_asic, 0, + new TGeoTranslation("", 0, -fasp_yoffset, GETS_zpos + 0.5 * GETS_thickness + 0.5 * fpga_size[2])); + faspro->AddNode(vol_fpga_asic, 1, + new TGeoTranslation("", 0, fasp_yoffset, GETS_zpos + 0.5 * GETS_thickness + 0.5 * fpga_size[2])); + } + // supports for electronics + TGeoBBox* faspro_fy = new TGeoBBox("faspro_fy", 0.4 / 2, 0.5 + 0.5 * activeAreaY, 0.5 * FASPRO_zspace); + TGeoVolume* vol_faspro_fy = new TGeoVolume("faspro_fy", faspro_fy, frameVolMed); + vol_faspro_fy->SetLineColor(kViolet + 2); //vol_faspro_fy->SetTransparency(50); + + // now go on with FEB placement + TGeoVolumeAssembly* vol_feb = new TGeoVolumeAssembly("FEB"); // the mother volume of all FEBs + if (moduleType == 9) { // define ROB placement fot large 2D chamber + Int_t cFeb(1); + for (Int_t iFeb(0); cFeb < 2; cFeb++) { + vol_feb->AddNode(vol_faspro_fy, cFeb + 1, + new TGeoTranslation("", (cFeb - 0.5) * (FASPRO_length + FASPRO_dx) - FASPRO_length / 3, 0., + -0.5 * (FASPRO_thickness + FASPRO_zspace))); + for (Int_t rFeb(1); rFeb < 5; rFeb++) { + // the upper side ... + // vol_feb->AddNode(faspro, iFeb++, + // new TGeoTranslation("", cFeb*(FASPRO_length+FASPRO_dx), (rFeb+0.5)*(FASPRO_width+FASPRO_dy), 0)); + // the bottom side ... + vol_feb->AddNode(faspro, iFeb++, + new TGeoTranslation("", cFeb * (FASPRO_length + FASPRO_dx) - FASPRO_length / 3., + -(rFeb + 0.5) * (FASPRO_width + FASPRO_dy) + FASPRO_width / 2, 0)); + } + } + vol_feb->AddNode(vol_faspro_fy, cFeb + 1, + new TGeoTranslation("", (cFeb - 0.5) * (FASPRO_length + FASPRO_dx) - FASPRO_length / 3., 0., + -0.5 * (FASPRO_thickness + FASPRO_zspace))); + } + else { // define ROB placement fot small 2D hybrid chamber + TGeoRotation* faspro_rot = new TGeoRotation("faspro_rot"); + faspro_rot->RotateX(180.); + faspro_rot->RegisterYourself(); + TGeoTranslation* faspro_pos = new TGeoTranslation("", -4, 1.5 * FASPRO_width, -FASPRO_zspace); + TGeoHMatrix* faspro_mx = new TGeoHMatrix(""); + (*faspro_mx) = (*faspro_pos) * (*faspro_rot); + vol_feb->AddNode(faspro, 5, faspro_mx); + } + + if (IncludeRobs) { + Info("create_trd2d_module_type", "make ROBs ..."); + TGeoVolumeAssembly* crob = new TGeoVolumeAssembly("C-ROB"); + TGeoBBox* crob_bd = new TGeoBBox("crob_bd", rob_size_x / 2., rob_size_y / 2., rob_thickness / 2.); + TGeoVolume* vol_crob_bd = new TGeoVolume("crob_bd", crob_bd, febVolMed); // the ROB made of PCB + vol_crob_bd->SetLineColor(kRed + 8); // set color + TGeoRotation* crob_fmc_rot = new TGeoRotation("crob_fmc_rot"); + crob_fmc_rot->RotateZ(90.); + crob_fmc_rot->RegisterYourself(); + TGeoTranslation* crob_fmc_tra = new TGeoTranslation("crob_fmc_tra", 0., 0.5 * (FMCwidth - robConn_size_x) + 0.2, + 0.5 * (FMCheight + rob_thickness)); + crob_fmc_tra->RegisterYourself(); + TGeoHMatrix* crob_fmc_transform = new TGeoHMatrix(""); + (*crob_fmc_transform) = (*crob_fmc_rot) * (*crob_fmc_tra); + // Add GETS - CROB interface + TGeoBBox* crob_addapt = new TGeoBBox("crob_addapt", robConn_size_x / 2., robConn_size_y / 2., rob_thickness / 2.); + TGeoVolume* vol_crob_addapt = new TGeoVolume("crob_addapt", crob_addapt, febVolMed); // the ROB made of PCB + vol_crob_addapt->SetLineColor(kRed + 6); // set color + crob->AddNode(vol_crob_addapt, 0); + crob->AddNode(fmc_connect, 1, crob_fmc_transform); + crob->AddNode(vol_crob_bd, 1, + new TGeoTranslation("", -0.5 * (rob_size_x - robConn_size_x) + 1.5, 0., FMCheight + rob_thickness)); + + // GBTXs + TGeoBBox* crob_gbtx = new TGeoBBox("crob_gbtx", gbtx_width / 2., gbtx_width / 2., gbtx_thickness / 2.); + TGeoVolume* vol_crob_gbtx = new TGeoVolume("crob_gbtx", crob_gbtx, asicVolMed); + vol_crob_gbtx->SetLineColor(kGreen); + //place 3 GBTXs on each C-ROC + Double_t gbtx_pos_x = 0.5 * (-rob_size_x + gbtx_width) - 1.5 /*-0.5*/; + Double_t gbtx_pos_y = 0.5 * (rob_size_y - gbtx_width) - 0.5; + crob->AddNode(vol_crob_gbtx, 0, + new TGeoTranslation("", gbtx_pos_x, gbtx_pos_y, FMCheight + rob_thickness + 0.5 * gbtx_thickness)); + crob->AddNode(vol_crob_gbtx, 1, + new TGeoTranslation("", gbtx_pos_x, -gbtx_pos_y, FMCheight + rob_thickness + 0.5 * gbtx_thickness)); + crob->AddNode(vol_crob_gbtx, 2, + new TGeoTranslation("", gbtx_pos_x + 5., 0., FMCheight + rob_thickness + 0.5 * gbtx_thickness)); + // Info("create_trd2d_module_type", "place ROBs ..."); + // // now go on with ROB placement + // Int_t nofRobs = RobsPerModule[ 2 ], nofRobsHalf(nofRobs/2); + // for (Int_t iRob = 0, jRob(0); iRob < nofRobsHalf; iRob++) { + // printf("ROB[%d]\n", iRob); + // Double_t rob_pos = (iRob + 0.5) / nofRobsHalf - 0.5, // equal spacing of ROBs on the backpanel + // rob_pos_y = rob_pos * activeAreaY; + // vol_feb->AddNode(crob, jRob++, new TGeoTranslation("", -0.5*(FASPRO_length+FASPRO_dx), rob_pos_y, LVB_pos)); + // TGeoRotation *crob_rot = new TGeoRotation("crob_rot"); crob_rot->RotateZ(180.); crob_rot->RegisterYourself(); + // TGeoTranslation *crob_tra = new TGeoTranslation("crob_tra", 0.5*(FASPRO_length+FASPRO_dx), rob_pos_y, LVB_pos); crob_tra->RegisterYourself(); + // TGeoHMatrix *crob_transform = new TGeoHMatrix(""); (*crob_transform)=(*crob_tra)*(*crob_rot); + // vol_feb->AddNode(crob, jRob++, crob_transform); + // } + } // IncludeGbtx + + // put FEB box on module + module->AddNode( + vol_feb, 1, + new TGeoTranslation("", 0., 0., FASPRO_position)); // put febvolume at correct z position wrt to the module + } + + return module; +} + + +Int_t copy_nr(Int_t stationNr, Int_t copyNr, Int_t isRotated, Int_t planeNr, Int_t modinplaneNr) +{ + if (modinplaneNr > 128) + printf("Warning: too many modules in this layer %02d (max 128 according to " + "CbmTrdAddress)\n", + planeNr); + + return (stationNr * 100000000 // 1 digit + + copyNr * 1000000 // 2 digit + + isRotated * 100000 // 1 digit + + planeNr * 1000 // 2 digit + + modinplaneNr * 1); // 3 digit +} + +void create_detector_layers(Int_t layerId) +{ + Int_t module_id = 0; + Int_t layerType = LayerType[layerId] / 10; // this is also a station number + Int_t isRotated = LayerType[layerId] % 10; // is 1 for layers 2,4, ... + + TGeoRotation* module_rotation = new TGeoRotation(); + + Int_t stationNr = layerType; + + // rotation is now done in the for loop for each module individually + // if ( isRotated == 1 ) { + // module_rotation = new TGeoRotation(); + // module_rotation->RotateZ(90.); + // } else { + // module_rotation = new TGeoRotation(); + // module_rotation->RotateZ( 0.); + // } + + Int_t innerarray_size1 = LayerArraySize[layerType - 1][0]; + Int_t innerarray_size2 = LayerArraySize[layerType - 1][1]; + const Int_t* innerLayer; + + Int_t outerarray_size1 = LayerArraySize[layerType - 1][2]; + Int_t outerarray_size2 = LayerArraySize[layerType - 1][3]; + const Int_t* outerLayer; + + if (1 == layerType) { + innerLayer = (Int_t*) layer1i; + outerLayer = (Int_t*) layer1o; + } + else if (2 == layerType) { + innerLayer = (Int_t*) layer2i; + outerLayer = (Int_t*) layer2o; + } + else if (3 == layerType) { + innerLayer = (Int_t*) layer3i; + outerLayer = (Int_t*) layer3o; + } + else { + std::cout << "Type of layer not known" << std::endl; + } + Info("create_detector_layers", "Layer id(%d) type(%d)", layerId, layerType); + + // add layer keeping volume + TString layername = Form("layer%02d", PlaneId[layerId]); + TGeoVolume* layer = new TGeoVolumeAssembly(layername); + + // compute layer copy number + Int_t i = LayerType[layerId] / 10 * 10000 // 1 digit // fStation + + LayerType[layerId] % 10 * 1000 // 1 digit // isRotated + + LayerNrInStation[layerId] * 100 // 1 digit // fLayer + + PlaneId[layerId]; // 2 digits // fPlane // layer type as leading digit in copy number of layer + gGeoMan->GetVolume(geoVersion)->AddNode(layer, i); + + // Int_t i = 100 + PlaneId[layerId]; + // gGeoMan->GetVolume(geoVersion)->AddNode(layer, 1); + // cout << layername << endl; + + Double_t ExplodeScale = 1.00; + if (DoExplode) // if explosion, set scale + ExplodeScale = ExplodeFactor; + + Int_t modId = 0; // module id, only within this layer + + Int_t copyNrIn[4] = {0, 0, 0, 0}; // copy number for each module type + for (Int_t type = 1; type <= 4; type++) { + for (Int_t j = (innerarray_size1 - 1); j >= 0; j--) { // start from the bottom + for (Int_t i = 0; i < innerarray_size2; i++) { + module_id = *(innerLayer + (j * innerarray_size2 + i)); + if (module_id / 100 == type) { + Info("create_detector_layers", "add module[%d] of type[%d]", module_id, type); + Int_t y = -(j - 2); + Int_t x = i - 2; + + // displacement + Double_t dx = 0; + Double_t dy = 0; + Double_t dz = 0; + + if (DisplaceRandom) { + dx = (r3.Rndm() - .5) * 2 * maxdx; // max +- 0.1 cm shift + dy = (r3.Rndm() - .5) * 2 * maxdy; // max +- 0.1 cm shift + dz = (r3.Rndm() - .5) * 2 * maxdz; // max +- 1.0 cm shift + } + + Double_t xPos = DetectorSizeX[0] * x * ExplodeScale + dx; + Double_t yPos = DetectorSizeY[0] * y * ExplodeScale + dy; + copyNrIn[type - 1]++; + modId++; + + // statistics per layer and module type + ModuleStats[layerId][type - 1]++; + + // Int_t copy = copy_nr_modid(stationNr, layerNrInStation, copyNrIn[type - 1], PlaneId[layerId], modId); // with modID + // Int_t copy = copy_nr(stationNr, copyNrIn[type - 1], isRotated, PlaneId[layerId], modId); + + // take care of FEB orientation - away from beam + Int_t copy = 0; + module_rotation = new TGeoRotation(); // need to renew rotation to start from 0 degree angle + if (isRotated == 0) // layer 1,3 ... + { + copy = copy_nr(stationNr, copyNrIn[type - 1], module_id / 10 % 10, PlaneId[layerId], modId); + module_rotation->RotateZ( + (module_id / 10 % 10) * 90.); // rotate module by 0 or 180 degrees, see layer[1-3][i,o] - vertical pads + } + else // layer 2,4 ... + { + copy = copy_nr(stationNr, copyNrIn[type - 1], module_id % 10, PlaneId[layerId], modId); + module_rotation->RotateZ( + (module_id % 10) * 90.); // rotate module by 90 or 270 degrees, see layer[1-3][i,o] - horizontal pads + } + + // rotation + Double_t drotx = 0; + Double_t droty = 0; + Double_t drotz = 0; + + if (RotateRandom) { + drotx = (r3.Rndm() - .5) * 2 * maxdrotx; + droty = (r3.Rndm() - .5) * 2 * maxdroty; + drotz = (r3.Rndm() - .5) * 2 * maxdrotz; + + module_rotation->RotateZ(drotz); + module_rotation->RotateY(droty); + module_rotation->RotateX(drotx); + } + + TGeoCombiTrans* module_placement = + new TGeoCombiTrans(xPos, yPos, LayerPosition[layerId] + LayerThickness / 2 + dz, + module_rotation); // shift by half layer thickness + // gGeoMan->GetVolume(geoVersion)->AddNode(gModules[type - 1], copy, module_placement); + // add module to layer + gGeoMan->GetVolume(layername)->AddNode(gModules[type - 1], copy, module_placement); + // + } + } + } + } + + Int_t copyNrOut[4] = {0, 0, 0, 0}; // copy number for each module type + for (Int_t type = 5; type <= 8; type++) { + for (Int_t j = (outerarray_size1 - 1); j >= 0; j--) { // start from the bottom + for (Int_t i = 0; i < outerarray_size2; i++) { + module_id = *(outerLayer + (j * outerarray_size2 + i)); + if (module_id / 100 == type) { + Info("create_detector_layers", "add module[%d] of type[%d]", module_id, type); + Int_t y = -(j - 4); + Int_t x = i - 5; + + // displacement + Double_t dx = 0; + Double_t dy = 0; + Double_t dz = 0; + + if (DisplaceRandom) { + dx = (r3.Rndm() - .5) * 2 * maxdx; // max +- 0.1 cm shift + dy = (r3.Rndm() - .5) * 2 * maxdy; // max +- 0.1 cm shift + dz = (r3.Rndm() - .5) * 2 * maxdz; // max +- 1.0 cm shift + } + + Double_t xPos = DetectorSizeX[1] * x * ExplodeScale + dx; + Double_t yPos = DetectorSizeY[1] * y * ExplodeScale + dy; + copyNrOut[type - 5]++; + modId++; + + // statistics per layer and module type + ModuleStats[layerId][type - 1]++; + + // Int_t copy = copy_nr_modid(stationNr, layerNrInStation, copyNrOut[type - 5], PlaneId[layerId], modId); // with modID + // Int_t copy = copy_nr(stationNr, copyNrOut[type - 5], isRotated, PlaneId[layerId], modId); + + // take care of FEB orientation - away from beam + Int_t copy = 0; + module_rotation = new TGeoRotation(); // need to renew rotation to start from 0 degree angle + if (isRotated == 0) // layer 1,3 ... + { + copy = copy_nr(stationNr, copyNrOut[type - 5], module_id / 10 % 10, PlaneId[layerId], modId); + module_rotation->RotateZ( + (module_id / 10 % 10) * 90.); // rotate module by 0 or 180 degrees, see layer[1-3][i,o] - vertical pads + } + else // layer 2,4 ... + { + copy = copy_nr(stationNr, copyNrOut[type - 5], module_id % 10, PlaneId[layerId], modId); + module_rotation->RotateZ( + (module_id % 10) * 90.); // rotate module by 90 or 270 degrees, see layer[1-3][i,o] - horizontal pads + } + + // rotation + Double_t drotx = 0; + Double_t droty = 0; + Double_t drotz = 0; + + if (RotateRandom) { + drotx = (r3.Rndm() - .5) * 2 * maxdrotx; + droty = (r3.Rndm() - .5) * 2 * maxdroty; + drotz = (r3.Rndm() - .5) * 2 * maxdrotz; + + module_rotation->RotateZ(drotz); + module_rotation->RotateY(droty); + module_rotation->RotateX(drotx); + } + + Double_t frameref_angle = 0; + Double_t layer_angle = 0; + + cout << "layer " << layerId << " ---" << endl; + frameref_angle = atan((DetectorSizeX[1] / 2. - FrameWidth[1]) / (zfront[setupid] + 3 * LayerThickness)); + // frameref_angle = 15. / 180. * acos(-1); // set a fixed reference angle + cout << "reference angle " << frameref_angle * 180 / acos(-1) << endl; + + layer_angle = atan((DetectorSizeX[1] / 2. - FrameWidth[1]) / (zfront[setupid] + layerId * LayerThickness)); + cout << "layer angle " << layer_angle * 180 / acos(-1) << endl; + // DEDE + // xPos = tan( frameref_angle ) * (zfront[setupid] + layerId * LayerThickness) - (DetectorSizeX[1]/2. - FrameWidth[1]); // shift module along x-axis + xPos = 0; + cout << "layer " << layerId << " - xPos " << xPos << endl; + + layer_angle = + atan((DetectorSizeX[1] / 2. - FrameWidth[1] + xPos) / (zfront[setupid] + layerId * LayerThickness)); + cout << "corrected angle " << layer_angle * 180 / acos(-1) << endl; + + + // Double_t frameangle[4] = {0}; + // for ( Int_t ilayer = 3; ilayer >= 0; ilayer--) + // { + // frameangle[ilayer] = atan( (DetectorSizeX[1]/2. - FrameWidth[1]) / (zfront[setupid] + ilayer * LayerThickness) ); + // cout << "layer " << ilayer << " - angle " << frameangle[ilayer] * 180 / acos(-1) << endl; + // + // xPos = (DetectorSizeX[1]/2. - FrameWidth[1]); + // cout << "layer " << ilayer << " - xPos " << xPos << endl; + // + // xPos = tan( frameangle[3] ) * (zfront[setupid] + ilayer * LayerThickness); + // cout << "layer " << ilayer << " - xPos " << xPos << endl; + // + // xPos = (DetectorSizeX[1]/2. - FrameWidth[1]) - ( tan( frameangle[3] ) * (zfront[setupid] + ilayer * LayerThickness) ); // shift module along x-axis + // cout << "layer " << ilayer << " - xPos " << xPos << endl; + // } + + + TGeoCombiTrans* module_placement = + new TGeoCombiTrans(xPos, yPos, LayerPosition[layerId] + LayerThickness / 2 + dz, + module_rotation); // shift by half layer thickness + + // add module to layer + gGeoMan->GetVolume(layername)->AddNode(gModules[type - 1], copy, module_placement); + // + } + } + } + } + + //install TRD2D detectors in the TRD setup + Int_t type = -1; + if (layerId == 2 && layerType == 2) type = 9; + if (layerId == 3 && layerType == 2) type = 10; + if (type < 0) return; + Info("create_detector_layers", "add module[0x%p] of type[%d]", (void*) gModules[type - 1], type); + + // Set positions of the TRD2D wrt front TRD1D + Double_t xPos = 0.5 * DetectorSizeX[2]; + + Double_t yPos = 2.5 * 5.12; // check with FASPRO_width; + + // statistics per layer and module type + ModuleStats[layerId][type - 1]++; + + module_rotation = new TGeoRotation(); + TGeoCombiTrans* module_placement = + new TGeoCombiTrans(xPos, yPos, LayerPosition[0] - (3 - layerId) * LayerThickness / 2, + module_rotation); // shift by half layer thickness + gGeoMan->GetVolume(layername)->AddNode(gModules[type - 1], 1, module_placement); +} + + +void create_mag_field_vector() +{ + const TString cbmfield_01 = "cbm_field"; + TGeoVolume* cbmfield_1 = new TGeoVolumeAssembly(cbmfield_01); + + TGeoMedium* copperVolMed = gGeoMan->GetMedium(PadCopperVolumeMedium); // define Volume Medium + + TGeoRotation* rotx090 = new TGeoRotation("rotx090"); + rotx090->RotateX(90.); // rotate 90 deg around x-axis + TGeoRotation* rotx270 = new TGeoRotation("rotx270"); + rotx270->RotateX(270.); // rotate 270 deg around x-axis + + Int_t tube_length = 500; + Int_t cone_length = 120; + Int_t cone_width = 280; + + // field tube + TGeoTube* trd_field = new TGeoTube("", 0., 100 / 2., tube_length / 2.); + TGeoVolume* trdmod1_fieldvol = new TGeoVolume("tube", trd_field, copperVolMed); + trdmod1_fieldvol->SetLineColor(kRed); + trdmod1_fieldvol->SetTransparency(30); // transparency for the TRD + TGeoTranslation* trd_field_trans = new TGeoTranslation("", 0., 0., 0.); // tube position + cbmfield_1->AddNode(trdmod1_fieldvol, 1, trd_field_trans); + + // field cone + TGeoCone* trd_cone = new TGeoCone("", cone_length / 2., 0., cone_width / 2., 0., 0.); + TGeoVolume* trdmod1_conevol = new TGeoVolume("cone", trd_cone, copperVolMed); + trdmod1_conevol->SetLineColor(kRed); + trdmod1_conevol->SetTransparency(30); // transparency for the TRD + TGeoTranslation* trd_cone_trans = new TGeoTranslation("", 0., 0., (tube_length + cone_length) / 2.); // cone position + cbmfield_1->AddNode(trdmod1_conevol, 1, trd_cone_trans); + + TGeoCombiTrans* field_combi01 = new TGeoCombiTrans(0., 0., 40., rotx270); // point in +y direction + gGeoMan->GetVolume(geoVersion)->AddNode(cbmfield_1, 1, field_combi01); + + // TGeoCombiTrans* field_combi02 = new TGeoCombiTrans( 200., 0., 0., rotx090); // point in -y direction + // gGeoMan->GetVolume(geoVersion)->AddNode(cbmfield_1, 2, field_combi02); +} + + +void create_gibbet_support() +{ + const TString gibbet_01 = "gibbet_bars_trd1"; + TGeoVolume* gibbet_1 = new TGeoVolumeAssembly(gibbet_01); + + TGeoBBox* gibbet1; + TGeoBBox* gibbet2; + TGeoBBox* gibbet3; + TGeoBBox* gibbet4; + + TGeoVolume* gibbet1_vol; + TGeoVolume* gibbet2_vol; + TGeoVolume* gibbet3_vol; + TGeoVolume* gibbet4_vol; + + TGeoTranslation* gibbet1_trans; + TGeoTranslation* gibbet2_trans; + TGeoTranslation* gibbet3_trans; + TGeoTranslation* gibbet4_trans; + TGeoTranslation* gibbet5_trans; + + Int_t x_offset = 0.0; // x position of gibbet rim towards module + // Int_t x_offset = -10.0; // x position of gibbet rim towards module + + const Int_t kColor1010n = kAzure + 8; // gibbet color + const Int_t kColor1010s = kGray; // gibbet color + const Int_t kColor0305n = kBlue; // gibbet color + + TGeoMedium* k1010nVolMed = gGeoMan->GetMedium(Kanya10x10nVolumeMedium); + TGeoMedium* k1010sVolMed = gGeoMan->GetMedium(Kanya10x10sVolumeMedium); + TGeoMedium* k0305nVolMed = gGeoMan->GetMedium(Kanya03x05nVolumeMedium); + + const Int_t kanya01 = 105; // kanyahoritop + const Int_t kanya02 = 90; // kanyavertnear + const Int_t kanya03 = 150; // kanyavertpill + + const Int_t gapx = 5; // gap in x direction + const Int_t gapy = 2; // gap in y direction + const Int_t gapxpill = 2; // gap in x direction between vertical pillars + + // horizontal gibbet 2020 + gibbet1 = new TGeoBBox("gibbet1", kanya01 / 2., gibbet_width / 2., gibbet_thickness / 2.); + gibbet1_vol = new TGeoVolume("gibbetvol1", gibbet1, k1010nVolMed); + gibbet1_vol->SetLineColor(kColor1010n); + + // translations + gibbet1_trans = new TGeoTranslation("", (kanya01 - DetectorSizeX[1]) / 2. - gapx + x_offset, + (DetectorSizeY[1] + gibbet_width) / 2. + gapy, 0.); + gibbet_1->AddNode(gibbet1_vol, 1, gibbet1_trans); + + // vertical gibbet 2020 + gibbet2 = new TGeoBBox("gibbet2", gibbet_width / 2., kanya02 / 2., gibbet_thickness / 2.); + gibbet2_vol = new TGeoVolume("gibbetvol2", gibbet2, k1010nVolMed); + gibbet2_vol->SetLineColor(kColor1010n); + + // translations + gibbet2_trans = new TGeoTranslation("", -(DetectorSizeX[1] + gibbet_width) / 2. - gapx + x_offset, + (DetectorSizeY[1] - kanya02) / 2. + gapy + 2 * gibbet_width, 0.); + gibbet_1->AddNode(gibbet2_vol, 2, gibbet2_trans); + + // vertical gibbet pillar 2020 + gibbet3 = new TGeoBBox("gibbet3", gibbet_width / 2., kanya03 / 2., gibbet_thickness / 2.); + gibbet3_vol = new TGeoVolume("gibbetvol3", gibbet3, k1010sVolMed); + gibbet3_vol->SetLineColor(kColor1010s); + + // translations + gibbet3_trans = + new TGeoTranslation("", -(DetectorSizeX[1] + 3 * gibbet_width) / 2. - gapx - gapxpill + x_offset, 0., 0.); + gibbet_1->AddNode(gibbet3_vol, 3, gibbet3_trans); + + // vertical mount rails 2020 + gibbet4 = new TGeoBBox("gibbet4", rail_width / 2., (DetectorSizeY[1] + gapy) / 2., rail_thickness / 2.); + gibbet4_vol = new TGeoVolume("gibbetvol4", gibbet4, k0305nVolMed); + gibbet4_vol->SetLineColor(kColor0305n); + + // translations + gibbet4_trans = new TGeoTranslation("", -(DetectorSizeX[1] - rail_width) / 2. + x_offset, +gapy / 2., 0.); + gibbet_1->AddNode(gibbet4_vol, 4, gibbet4_trans); + + // translations + gibbet5_trans = new TGeoTranslation("", (DetectorSizeX[1] - rail_width) / 2. + x_offset, +gapy / 2., 0.); + gibbet_1->AddNode(gibbet4_vol, 5, gibbet5_trans); + + Int_t l; + for (l = 0; l < 4; l++) + if ((ShowLayer[l]) && (BusBarOrientation[l] == 1)) // if geometry contains layer l + { + TString layername = Form("layer%02d", l + 1); + TGeoTranslation* gibbet_placement = + new TGeoTranslation(0, 0, LayerPosition[l] + LayerThickness / 2. + gibbet_position); + gGeoMan->GetVolume(layername)->AddNode(gibbet_1, l, gibbet_placement); + } +} + + +void create_power_bars_vertical() +{ + const TString power_01 = "power_bars_trd1"; + TGeoVolume* power_1 = new TGeoVolumeAssembly(power_01); + + TGeoBBox* power1; + TGeoBBox* power2; + + TGeoVolume* power1_vol; + TGeoVolume* power2_vol; + + TGeoTranslation* power1_trans; + TGeoTranslation* power2_trans; + + const Int_t kColor = kBlue; // bus bar color + + TGeoMedium* powerBusVolMed = gGeoMan->GetMedium(PowerBusVolumeMedium); + + // powerbus - horizontal short + power1 = new TGeoBBox("power1", (DetectorSizeX[1] - DetectorSizeX[0] - powerbar_width) / 2., powerbar_width / 2., + powerbar_thickness / 2.); + power1_vol = new TGeoVolume("powerbus1", power1, powerBusVolMed); + power1_vol->SetLineColor(kColor); + + // translations + power1_trans = new TGeoTranslation("", 1 * (DetectorSizeX[1] - DetectorSizeY[0] / 2.), 1.5 * DetectorSizeY[1], 0.); + power_1->AddNode(power1_vol, 1, power1_trans); + + power1_trans = new TGeoTranslation("", -1 * (DetectorSizeX[1] - DetectorSizeY[0] / 2.), -1.5 * DetectorSizeY[1], 0.); + power_1->AddNode(power1_vol, 2, power1_trans); + + // powerbus - horizontal long + power1 = + new TGeoBBox("power1", (DetectorSizeX[0] - powerbar_width) / 2., powerbar_width / 2., powerbar_thickness / 2.); + power1_vol = new TGeoVolume("powerbus1", power1, powerBusVolMed); + power1_vol->SetLineColor(kColor); + + // translations + power1_trans = new TGeoTranslation("", -1 * DetectorSizeX[0], 1.5 * DetectorSizeY[1], 0.); + power_1->AddNode(power1_vol, 3, power1_trans); + + power1_trans = new TGeoTranslation("", 1 * DetectorSizeX[0], -1.5 * DetectorSizeY[1], 0.); + power_1->AddNode(power1_vol, 4, power1_trans); + + + // powerbus - vertical long + power2 = + new TGeoBBox("power2", powerbar_width / 2., (5 * DetectorSizeY[1] + powerbar_width) / 2., powerbar_thickness / 2.); + power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed); + power2_vol->SetLineColor(kColor); + + // translations + power2_trans = new TGeoTranslation("", -3.5 * DetectorSizeX[1], 0., 0.); + power_1->AddNode(power2_vol, 1, power2_trans); + power2_trans = new TGeoTranslation("", 3.5 * DetectorSizeX[1], 0., 0.); + power_1->AddNode(power2_vol, 2, power2_trans); + + power2_trans = new TGeoTranslation("", -2.5 * DetectorSizeX[1], 0., 0.); + power_1->AddNode(power2_vol, 3, power2_trans); + power2_trans = new TGeoTranslation("", 2.5 * DetectorSizeX[1], 0., 0.); + power_1->AddNode(power2_vol, 4, power2_trans); + + power2_trans = new TGeoTranslation("", -1.5 * DetectorSizeX[1], 0., 0.); + power_1->AddNode(power2_vol, 5, power2_trans); + power2_trans = new TGeoTranslation("", 1.5 * DetectorSizeX[1], 0., 0.); + power_1->AddNode(power2_vol, 6, power2_trans); + + // powerbus - vertical middle + power2 = + new TGeoBBox("power2", powerbar_width / 2., (3 * DetectorSizeY[1] + powerbar_width) / 2., powerbar_thickness / 2.); + power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed); + power2_vol->SetLineColor(kColor); + + // translations + power2_trans = new TGeoTranslation("", -1.5 * DetectorSizeX[0], 0., 0.); + power_1->AddNode(power2_vol, 7, power2_trans); + power2_trans = new TGeoTranslation("", 1.5 * DetectorSizeX[0], 0., 0.); + power_1->AddNode(power2_vol, 8, power2_trans); + + // powerbus - vertical short 1 + power2 = new TGeoBBox("power2", powerbar_width / 2., 1 * DetectorSizeY[1] / 2., powerbar_thickness / 2.); + power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed); + power2_vol->SetLineColor(kColor); + // power2_vol->SetLineColor(kRed); + + // translations + power2_trans = new TGeoTranslation("", -0.5 * DetectorSizeX[1], (2.0 * DetectorSizeY[1] + powerbar_width / 2.), 0.); + power_1->AddNode(power2_vol, 9, power2_trans); + power2_trans = new TGeoTranslation("", 0.5 * DetectorSizeX[1], -(2.0 * DetectorSizeY[1] + powerbar_width / 2.), 0.); + power_1->AddNode(power2_vol, 10, power2_trans); + + // powerbus - vertical short 2 + power2 = + new TGeoBBox("power2", powerbar_width / 2., (1 * DetectorSizeY[1] + powerbar_width) / 2., powerbar_thickness / 2.); + power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed); + power2_vol->SetLineColor(kColor); + + // translations + power2_trans = new TGeoTranslation("", -0.5 * DetectorSizeX[1], -2.0 * DetectorSizeY[1], 0.); + power_1->AddNode(power2_vol, 11, power2_trans); + power2_trans = new TGeoTranslation("", 0.5 * DetectorSizeX[1], 2.0 * DetectorSizeY[1], 0.); + power_1->AddNode(power2_vol, 12, power2_trans); + + // powerbus - vertical short 3 + power2 = new TGeoBBox("power2", powerbar_width / 2., (2 * DetectorSizeY[0] + powerbar_width / 2.) / 2., + powerbar_thickness / 2.); + power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed); + power2_vol->SetLineColor(kColor); + + // translations + power2_trans = new TGeoTranslation("", -0.5 * DetectorSizeX[0], (1.5 * DetectorSizeY[0] + powerbar_width / 4.), 0.); + power_1->AddNode(power2_vol, 11, power2_trans); + power2_trans = new TGeoTranslation("", 0.5 * DetectorSizeX[0], -(1.5 * DetectorSizeY[0] + powerbar_width / 4.), 0.); + power_1->AddNode(power2_vol, 12, power2_trans); + + Int_t l; + for (l = 0; l < 4; l++) + if ((ShowLayer[l]) && (BusBarOrientation[l] == 1)) // if geometry contains layer l + { + TString layername = Form("layer%02d", l + 1); + TGeoTranslation* power_placement = + new TGeoTranslation(0, 0, LayerPosition[l] + LayerThickness / 2. + powerbar_position); + gGeoMan->GetVolume(layername)->AddNode(power_1, l, power_placement); + } +} + + +void create_power_bars_horizontal() +{ + const TString power_01 = "power_bars_trd1"; + TGeoVolume* power_1 = new TGeoVolumeAssembly(power_01); + + TGeoBBox* power1; + TGeoBBox* power2; + + TGeoVolume* power1_vol; + TGeoVolume* power2_vol; + + TGeoTranslation* power1_trans; + TGeoTranslation* power2_trans; + + const Int_t kColor = kBlue; // bus bar color + + TGeoMedium* powerBusVolMed = gGeoMan->GetMedium(PowerBusVolumeMedium); + + // powerbus - vertical short + power1 = new TGeoBBox("power1", powerbar_width / 2., (DetectorSizeY[1] - DetectorSizeY[0] - powerbar_width) / 2., + powerbar_thickness / 2.); + power1_vol = new TGeoVolume("powerbus1", power1, powerBusVolMed); + power1_vol->SetLineColor(kColor); + + // translations + power1_trans = new TGeoTranslation("", 1.5 * DetectorSizeX[1], -1 * (DetectorSizeY[1] - DetectorSizeY[0] / 2.), 0.); + power_1->AddNode(power1_vol, 1, power1_trans); + + power1_trans = new TGeoTranslation("", -1.5 * DetectorSizeX[1], 1 * (DetectorSizeY[1] - DetectorSizeY[0] / 2.), 0.); + power_1->AddNode(power1_vol, 2, power1_trans); + + // powerbus - vertical long + power1 = + new TGeoBBox("power1", powerbar_width / 2., (DetectorSizeY[0] - powerbar_width) / 2., powerbar_thickness / 2.); + power1_vol = new TGeoVolume("powerbus1", power1, powerBusVolMed); + power1_vol->SetLineColor(kColor); + + // translations + power1_trans = new TGeoTranslation("", 1.5 * DetectorSizeX[1], 1 * DetectorSizeY[0], 0.); + power_1->AddNode(power1_vol, 3, power1_trans); + + power1_trans = new TGeoTranslation("", -1.5 * DetectorSizeX[1], -1 * DetectorSizeY[0], 0.); + power_1->AddNode(power1_vol, 4, power1_trans); + + + // powerbus - horizontal long + power2 = + new TGeoBBox("power2", (7 * DetectorSizeX[1] + powerbar_width) / 2., powerbar_width / 2., powerbar_thickness / 2.); + power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed); + power2_vol->SetLineColor(kColor); + + // translations + power2_trans = new TGeoTranslation("", 0., -2.5 * DetectorSizeY[1], 0.); + power_1->AddNode(power2_vol, 1, power2_trans); + power2_trans = new TGeoTranslation("", 0., 2.5 * DetectorSizeY[1], 0.); + power_1->AddNode(power2_vol, 2, power2_trans); + + power2_trans = new TGeoTranslation("", 0., -1.5 * DetectorSizeY[1], 0.); + power_1->AddNode(power2_vol, 3, power2_trans); + power2_trans = new TGeoTranslation("", 0., 1.5 * DetectorSizeY[1], 0.); + power_1->AddNode(power2_vol, 4, power2_trans); + + // powerbus - horizontal middle + power2 = + new TGeoBBox("power2", (3 * DetectorSizeX[1] + powerbar_width) / 2., powerbar_width / 2., powerbar_thickness / 2.); + power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed); + power2_vol->SetLineColor(kColor); + + // translations + power2_trans = new TGeoTranslation("", 0., -1.5 * DetectorSizeY[0], 0.); + power_1->AddNode(power2_vol, 7, power2_trans); + power2_trans = new TGeoTranslation("", 0., 1.5 * DetectorSizeY[0], 0.); + power_1->AddNode(power2_vol, 8, power2_trans); + + // powerbus - horizontal short 1 + power2 = new TGeoBBox("power2", 2 * DetectorSizeX[1] / 2., powerbar_width / 2., powerbar_thickness / 2.); + power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed); + power2_vol->SetLineColor(kColor); + // power2_vol->SetLineColor(kRed); + + // translations + power2_trans = new TGeoTranslation("", (2.5 * DetectorSizeX[1] + powerbar_width / 2.), 0.5 * DetectorSizeY[1], 0.); + power_1->AddNode(power2_vol, 9, power2_trans); + power2_trans = new TGeoTranslation("", -(2.5 * DetectorSizeX[1] + powerbar_width / 2.), -0.5 * DetectorSizeY[1], 0.); + power_1->AddNode(power2_vol, 10, power2_trans); + + // powerbus - horizontal short 2 + power2 = + new TGeoBBox("power2", (2 * DetectorSizeX[1] + powerbar_width) / 2., powerbar_width / 2., powerbar_thickness / 2.); + power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed); + power2_vol->SetLineColor(kColor); + + // translations + power2_trans = new TGeoTranslation("", -2.5 * DetectorSizeX[1], 0.5 * DetectorSizeY[1], 0.); + power_1->AddNode(power2_vol, 11, power2_trans); + power2_trans = new TGeoTranslation("", 2.5 * DetectorSizeX[1], -0.5 * DetectorSizeY[1], 0.); + power_1->AddNode(power2_vol, 12, power2_trans); + + // powerbus - horizontal short 3 + power2 = new TGeoBBox("power2", (2 * DetectorSizeX[0] + powerbar_width / 2.) / 2., powerbar_width / 2., + powerbar_thickness / 2.); + power2_vol = new TGeoVolume("powerbus2", power2, powerBusVolMed); + power2_vol->SetLineColor(kColor); + + // translations + power2_trans = new TGeoTranslation("", (1.5 * DetectorSizeX[0] + powerbar_width / 4.), 0.5 * DetectorSizeY[0], 0.); + power_1->AddNode(power2_vol, 11, power2_trans); + power2_trans = new TGeoTranslation("", -(1.5 * DetectorSizeX[0] + powerbar_width / 4.), -0.5 * DetectorSizeY[0], 0.); + power_1->AddNode(power2_vol, 12, power2_trans); + + Int_t l; + for (l = 0; l < 4; l++) + if ((ShowLayer[l]) && (BusBarOrientation[l] == 0)) // if geometry contains layer l + { + TString layername = Form("layer%02d", l + 1); + TGeoTranslation* power_placement = + new TGeoTranslation(0, 0, LayerPosition[l] + LayerThickness / 2. + powerbar_position); + gGeoMan->GetVolume(layername)->AddNode(power_1, l, power_placement); + } +} + + +void create_xtru_supports() +{ + const TString trd_01 = "support_trd1"; + TGeoVolume* trd_1 = new TGeoVolumeAssembly(trd_01); + + const TString trd_02 = "support_trd2"; + TGeoVolume* trd_2 = new TGeoVolumeAssembly(trd_02); + + const TString trd_03 = "support_trd3"; + TGeoVolume* trd_3 = new TGeoVolumeAssembly(trd_03); + + // const TString trdSupport = "supportframe"; + // TGeoVolume* trdsupport = new TGeoVolumeAssembly(trdSupport); + // + // trdsupport->AddNode(trd_1, 1); + // trdsupport->AddNode(trd_2, 2); + // trdsupport->AddNode(trd_3, 3); + + TGeoMedium* aluminiumVolMed = gGeoMan->GetMedium(AluminiumVolumeMedium); // define Volume Medium + + const Double_t x[12] = {-15, -15, -1, -1, -15, -15, 15, 15, 1, 1, 15, 15}; // IPB 400 + const Double_t y[12] = {-20, -18, -18, 18, 18, 20, + 20, 18, 18, -18, -18, -20}; // 30 x 40 cm in size, 2 cm wall thickness + const Double_t Hwid = -2 * x[0]; // 30 + const Double_t Hhei = -2 * y[0]; // 40 + + Double_t AperX[3] = {450., 550., 600.}; // inner aperture in X of support structure for stations 1,2,3 + Double_t AperY[3] = {350., 450., 500.}; // inner aperture in Y of support structure for stations 1,2,3 + Double_t PilPosX; + Double_t BarPosY; + + const Double_t BeamHeight = 570; // beamline is at 5.7m above floor + + Double_t PilPosZ[6]; // PilPosZ + // PilPosZ[0] = LayerPosition[0] + LayerThickness/2.; + // PilPosZ[1] = LayerPosition[3] + LayerThickness/2.; + // PilPosZ[2] = LayerPosition[4] + LayerThickness/2.; + // PilPosZ[3] = LayerPosition[7] + LayerThickness/2.; + // PilPosZ[4] = LayerPosition[8] + LayerThickness/2.; + // PilPosZ[5] = LayerPosition[9] + LayerThickness/2.; + + PilPosZ[0] = LayerPosition[0] + 15; + PilPosZ[1] = LayerPosition[3] - 15 + LayerThickness; + PilPosZ[2] = LayerPosition[4] + 15; + PilPosZ[3] = LayerPosition[7] - 15 + LayerThickness; + PilPosZ[4] = LayerPosition[8] + 15; + PilPosZ[5] = LayerPosition[9] - 15 + LayerThickness; + + // cout << "PilPosZ[0]: " << PilPosZ[0] << endl; + // cout << "PilPosZ[1]: " << PilPosZ[1] << endl; + + TGeoRotation* rotx090 = new TGeoRotation("rotx090"); + rotx090->RotateX(90.); // rotate 90 deg around x-axis + TGeoRotation* roty090 = new TGeoRotation("roty090"); + roty090->RotateY(90.); // rotate 90 deg around y-axis + TGeoRotation* rotz090 = new TGeoRotation("rotz090"); + rotz090->RotateZ(90.); // rotate 90 deg around y-axis + TGeoRotation* roty270 = new TGeoRotation("roty270"); + roty270->RotateY(270.); // rotate 270 deg around y-axis + + TGeoRotation* rotzx01 = new TGeoRotation("rotzx01"); + rotzx01->RotateZ(90.); // rotate 90 deg around z-axis + rotzx01->RotateX(90.); // rotate 90 deg around x-axis + + // TGeoRotation *rotxz01 = new TGeoRotation("rotxz01"); + // rotxz01->RotateX( 90.); // rotate 90 deg around x-axis + // rotxz01->RotateZ( 90.); // rotate 90 deg around z-axis + + Double_t ang1 = atan(3. / 4.) * 180. / acos(-1.); + // cout << "DEDE " << ang1 << endl; + // Double_t sin1 = acos(-1.); + // cout << "DEDE " << sin1 << endl; + TGeoRotation* rotx080 = new TGeoRotation("rotx080"); + rotx080->RotateX(90. - ang1); // rotate 80 deg around x-axis + TGeoRotation* rotx100 = new TGeoRotation("rotx100"); + rotx100->RotateX(90. + ang1); // rotate 100 deg around x-axis + + TGeoRotation* rotxy01 = new TGeoRotation("rotxy01"); + rotxy01->RotateX(90.); // rotate 90 deg around x-axis + rotxy01->RotateZ(-ang1); // rotate ang1 around rotated y-axis + + TGeoRotation* rotxy02 = new TGeoRotation("rotxy02"); + rotxy02->RotateX(90.); // rotate 90 deg around x-axis + rotxy02->RotateZ(ang1); // rotate ang1 around rotated y-axis + + + //------------------- + // vertical pillars (Y) + //------------------- + + // station 1 + if (ShowLayer[0]) // if geometry contains layer 1 (1st layer of station 1) + { + TGeoXtru* trd_H_vert1 = new TGeoXtru(2); // define Xtrusion of 2 planes + trd_H_vert1->DefinePolygon(12, x, y); + trd_H_vert1->DefineSection(0, -(AperY[0] + Hhei), 0, 0, 1.0); + trd_H_vert1->DefineSection(1, BeamHeight, 0, 0, 1.0); + TGeoVolume* trd_H_vert_vol1 = new TGeoVolume("trd_H_y_01", trd_H_vert1, aluminiumVolMed); + trd_H_vert_vol1->SetLineColor(kYellow); + PilPosX = AperX[0]; + + TGeoCombiTrans* trd_H_vert_combi01 = new TGeoCombiTrans((PilPosX + Hhei / 2.), 0., PilPosZ[0], rotzx01); + trd_1->AddNode(trd_H_vert_vol1, 11, trd_H_vert_combi01); + TGeoCombiTrans* trd_H_vert_combi02 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), 0., PilPosZ[0], rotzx01); + trd_1->AddNode(trd_H_vert_vol1, 12, trd_H_vert_combi02); + TGeoCombiTrans* trd_H_vert_combi03 = new TGeoCombiTrans((PilPosX + Hhei / 2.), 0., PilPosZ[1], rotzx01); + trd_1->AddNode(trd_H_vert_vol1, 13, trd_H_vert_combi03); + TGeoCombiTrans* trd_H_vert_combi04 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), 0., PilPosZ[1], rotzx01); + trd_1->AddNode(trd_H_vert_vol1, 14, trd_H_vert_combi04); + } + + // station 2 + if (ShowLayer[4]) // if geometry contains layer 5 (1st layer of station 2) + { + TGeoXtru* trd_H_vert1 = new TGeoXtru(2); // define Xtrusion of 2 planes + trd_H_vert1->DefinePolygon(12, x, y); + trd_H_vert1->DefineSection(0, -(AperY[1] + Hhei), 0, 0, 1.0); + trd_H_vert1->DefineSection(1, BeamHeight, 0, 0, 1.0); + TGeoVolume* trd_H_vert_vol1 = new TGeoVolume("trd_H_y_02", trd_H_vert1, aluminiumVolMed); + trd_H_vert_vol1->SetLineColor(kYellow); + PilPosX = AperX[1]; + + TGeoCombiTrans* trd_H_vert_combi01 = new TGeoCombiTrans((PilPosX + Hhei / 2.), 0., PilPosZ[2], rotzx01); + trd_2->AddNode(trd_H_vert_vol1, 21, trd_H_vert_combi01); + TGeoCombiTrans* trd_H_vert_combi02 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), 0., PilPosZ[2], rotzx01); + trd_2->AddNode(trd_H_vert_vol1, 22, trd_H_vert_combi02); + TGeoCombiTrans* trd_H_vert_combi03 = new TGeoCombiTrans((PilPosX + Hhei / 2.), 0., PilPosZ[3], rotzx01); + trd_2->AddNode(trd_H_vert_vol1, 23, trd_H_vert_combi03); + TGeoCombiTrans* trd_H_vert_combi04 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), 0., PilPosZ[3], rotzx01); + trd_2->AddNode(trd_H_vert_vol1, 24, trd_H_vert_combi04); + } + + // station 3 + if (ShowLayer[8]) // if geometry contains layer 9 (1st layer of station 3) + { + TGeoXtru* trd_H_vert1 = new TGeoXtru(2); // define Xtrusion of 2 planes + trd_H_vert1->DefinePolygon(12, x, y); + trd_H_vert1->DefineSection(0, -(AperY[2] + Hhei), 0, 0, 1.0); + trd_H_vert1->DefineSection(1, BeamHeight, 0, 0, 1.0); + TGeoVolume* trd_H_vert_vol1 = new TGeoVolume("trd_H_y_03", trd_H_vert1, aluminiumVolMed); + trd_H_vert_vol1->SetLineColor(kYellow); + PilPosX = AperX[2]; + + TGeoCombiTrans* trd_H_vert_combi01 = new TGeoCombiTrans((PilPosX + Hhei / 2.), 0., PilPosZ[4], rotzx01); + trd_3->AddNode(trd_H_vert_vol1, 31, trd_H_vert_combi01); + TGeoCombiTrans* trd_H_vert_combi02 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), 0., PilPosZ[4], rotzx01); + trd_3->AddNode(trd_H_vert_vol1, 32, trd_H_vert_combi02); + TGeoCombiTrans* trd_H_vert_combi03 = new TGeoCombiTrans((PilPosX + Hhei / 2.), 0., PilPosZ[5], rotzx01); + trd_3->AddNode(trd_H_vert_vol1, 33, trd_H_vert_combi03); + TGeoCombiTrans* trd_H_vert_combi04 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), 0., PilPosZ[5], rotzx01); + trd_3->AddNode(trd_H_vert_vol1, 34, trd_H_vert_combi04); + } + + + //------------------- + // horizontal supports (X) + //------------------- + + // station 1 + if (ShowLayer[0]) // if geometry contains layer 1 (1st layer of station 1) + { + TGeoXtru* trd_H_hori1 = new TGeoXtru(2); // define Xtrusion of 2 planes + trd_H_hori1->DefinePolygon(12, x, y); + trd_H_hori1->DefineSection(0, -AperX[0], 0, 0, 1.0); + trd_H_hori1->DefineSection(1, AperX[0], 0, 0, 1.0); + TGeoVolume* trd_H_hori_vol1 = new TGeoVolume("trd_H_x_01", trd_H_hori1, aluminiumVolMed); + trd_H_hori_vol1->SetLineColor(kRed); + BarPosY = AperY[0]; + + TGeoCombiTrans* trd_H_hori_combi01 = new TGeoCombiTrans(0., (BarPosY + Hhei / 2.), PilPosZ[0], roty090); + trd_1->AddNode(trd_H_hori_vol1, 11, trd_H_hori_combi01); + TGeoCombiTrans* trd_H_hori_combi02 = new TGeoCombiTrans(0., -(BarPosY + Hhei / 2.), PilPosZ[0], roty090); + trd_1->AddNode(trd_H_hori_vol1, 12, trd_H_hori_combi02); + TGeoCombiTrans* trd_H_hori_combi03 = new TGeoCombiTrans(0., (BarPosY + Hhei / 2.), PilPosZ[1], roty090); + trd_1->AddNode(trd_H_hori_vol1, 13, trd_H_hori_combi03); + TGeoCombiTrans* trd_H_hori_combi04 = new TGeoCombiTrans(0., -(BarPosY + Hhei / 2.), PilPosZ[1], roty090); + trd_1->AddNode(trd_H_hori_vol1, 14, trd_H_hori_combi04); + } + + // station 2 + if (ShowLayer[4]) // if geometry contains layer 5 (1st layer of station 2) + { + TGeoXtru* trd_H_hori1 = new TGeoXtru(2); // define Xtrusion of 2 planes + trd_H_hori1->DefinePolygon(12, x, y); + trd_H_hori1->DefineSection(0, -AperX[1], 0, 0, 1.0); + trd_H_hori1->DefineSection(1, AperX[1], 0, 0, 1.0); + TGeoVolume* trd_H_hori_vol1 = new TGeoVolume("trd_H_x_02", trd_H_hori1, aluminiumVolMed); + trd_H_hori_vol1->SetLineColor(kRed); + BarPosY = AperY[1]; + + TGeoCombiTrans* trd_H_hori_combi01 = new TGeoCombiTrans(0., (BarPosY + Hhei / 2.), PilPosZ[2], roty090); + trd_2->AddNode(trd_H_hori_vol1, 21, trd_H_hori_combi01); + TGeoCombiTrans* trd_H_hori_combi02 = new TGeoCombiTrans(0., -(BarPosY + Hhei / 2.), PilPosZ[2], roty090); + trd_2->AddNode(trd_H_hori_vol1, 22, trd_H_hori_combi02); + TGeoCombiTrans* trd_H_hori_combi03 = new TGeoCombiTrans(0., (BarPosY + Hhei / 2.), PilPosZ[3], roty090); + trd_2->AddNode(trd_H_hori_vol1, 23, trd_H_hori_combi03); + TGeoCombiTrans* trd_H_hori_combi04 = new TGeoCombiTrans(0., -(BarPosY + Hhei / 2.), PilPosZ[3], roty090); + trd_2->AddNode(trd_H_hori_vol1, 24, trd_H_hori_combi04); + } + + // station 3 + if (ShowLayer[8]) // if geometry contains layer 9 (1st layer of station 3) + { + TGeoXtru* trd_H_hori1 = new TGeoXtru(2); // define Xtrusion of 2 planes + trd_H_hori1->DefinePolygon(12, x, y); + trd_H_hori1->DefineSection(0, -AperX[2], 0, 0, 1.0); + trd_H_hori1->DefineSection(1, AperX[2], 0, 0, 1.0); + TGeoVolume* trd_H_hori_vol1 = new TGeoVolume("trd_H_x_03", trd_H_hori1, aluminiumVolMed); + trd_H_hori_vol1->SetLineColor(kRed); + BarPosY = AperY[2]; + + TGeoCombiTrans* trd_H_hori_combi01 = new TGeoCombiTrans(0., (BarPosY + Hhei / 2.), PilPosZ[4], roty090); + trd_3->AddNode(trd_H_hori_vol1, 31, trd_H_hori_combi01); + TGeoCombiTrans* trd_H_hori_combi02 = new TGeoCombiTrans(0., -(BarPosY + Hhei / 2.), PilPosZ[4], roty090); + trd_3->AddNode(trd_H_hori_vol1, 32, trd_H_hori_combi02); + TGeoCombiTrans* trd_H_hori_combi03 = new TGeoCombiTrans(0., (BarPosY + Hhei / 2.), PilPosZ[5], roty090); + trd_3->AddNode(trd_H_hori_vol1, 33, trd_H_hori_combi03); + TGeoCombiTrans* trd_H_hori_combi04 = new TGeoCombiTrans(0., -(BarPosY + Hhei / 2.), PilPosZ[5], roty090); + trd_3->AddNode(trd_H_hori_vol1, 34, trd_H_hori_combi04); + } + + + //------------------- + // horizontal supports (Z) + //------------------- + + // station 1 + if (ShowLayer[0]) // if geometry contains layer 1 (1st layer of station 1) + { + TGeoXtru* trd_H_slope1 = new TGeoXtru(2); // define Xtrusion of 2 planes + trd_H_slope1->DefinePolygon(12, x, y); + trd_H_slope1->DefineSection(0, -(PilPosZ[1] - PilPosZ[0] - Hwid) / 2., 0, 0, 1.0); + trd_H_slope1->DefineSection(1, +(PilPosZ[1] - PilPosZ[0] - Hwid) / 2., 0, 0, 1.0); + TGeoVolume* trd_H_slope_vol1 = new TGeoVolume("trd_H_z_01", trd_H_slope1, aluminiumVolMed); + trd_H_slope_vol1->SetLineColor(kGreen); + PilPosX = AperX[0]; + BarPosY = AperY[0]; + + TGeoCombiTrans* trd_H_slope_combi01 = + new TGeoCombiTrans((PilPosX + Hhei / 2.), (BarPosY + Hhei - Hwid / 2.), (PilPosZ[0] + PilPosZ[1]) / 2., rotz090); + trd_1->AddNode(trd_H_slope_vol1, 11, trd_H_slope_combi01); + TGeoCombiTrans* trd_H_slope_combi02 = + new TGeoCombiTrans(-(PilPosX + Hhei / 2.), (BarPosY + Hhei - Hwid / 2.), (PilPosZ[0] + PilPosZ[1]) / 2., rotz090); + trd_1->AddNode(trd_H_slope_vol1, 12, trd_H_slope_combi02); + TGeoCombiTrans* trd_H_slope_combi03 = + new TGeoCombiTrans((PilPosX + Hhei / 2.), -(BarPosY + Hhei - Hwid / 2.), (PilPosZ[0] + PilPosZ[1]) / 2., rotz090); + trd_1->AddNode(trd_H_slope_vol1, 13, trd_H_slope_combi03); + TGeoCombiTrans* trd_H_slope_combi04 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), -(BarPosY + Hhei - Hwid / 2.), + (PilPosZ[0] + PilPosZ[1]) / 2., rotz090); + trd_1->AddNode(trd_H_slope_vol1, 14, trd_H_slope_combi04); + } + + // station 2 + if (ShowLayer[4]) // if geometry contains layer 5 (1st layer of station 2) + { + TGeoXtru* trd_H_slope1 = new TGeoXtru(2); // define Xtrusion of 2 planes + trd_H_slope1->DefinePolygon(12, x, y); + trd_H_slope1->DefineSection(0, -(PilPosZ[3] - PilPosZ[2] - Hwid) / 2., 0, 0, 1.0); + trd_H_slope1->DefineSection(1, +(PilPosZ[3] - PilPosZ[2] - Hwid) / 2., 0, 0, 1.0); + TGeoVolume* trd_H_slope_vol1 = new TGeoVolume("trd_H_z_02", trd_H_slope1, aluminiumVolMed); + trd_H_slope_vol1->SetLineColor(kGreen); + PilPosX = AperX[1]; + BarPosY = AperY[1]; + + TGeoCombiTrans* trd_H_slope_combi01 = + new TGeoCombiTrans((PilPosX + Hhei / 2.), (BarPosY + Hhei - Hwid / 2.), (PilPosZ[2] + PilPosZ[3]) / 2., rotz090); + trd_2->AddNode(trd_H_slope_vol1, 21, trd_H_slope_combi01); + TGeoCombiTrans* trd_H_slope_combi02 = + new TGeoCombiTrans(-(PilPosX + Hhei / 2.), (BarPosY + Hhei - Hwid / 2.), (PilPosZ[2] + PilPosZ[3]) / 2., rotz090); + trd_2->AddNode(trd_H_slope_vol1, 22, trd_H_slope_combi02); + TGeoCombiTrans* trd_H_slope_combi03 = + new TGeoCombiTrans((PilPosX + Hhei / 2.), -(BarPosY + Hhei - Hwid / 2.), (PilPosZ[2] + PilPosZ[3]) / 2., rotz090); + trd_2->AddNode(trd_H_slope_vol1, 23, trd_H_slope_combi03); + TGeoCombiTrans* trd_H_slope_combi04 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), -(BarPosY + Hhei - Hwid / 2.), + (PilPosZ[2] + PilPosZ[3]) / 2., rotz090); + trd_2->AddNode(trd_H_slope_vol1, 24, trd_H_slope_combi04); + } + + // station 3 + if (ShowLayer[8]) // if geometry contains layer 9 (1st layer of station 3) + { + TGeoXtru* trd_H_slope1 = new TGeoXtru(2); // define Xtrusion of 2 planes + trd_H_slope1->DefinePolygon(12, x, y); + trd_H_slope1->DefineSection(0, -(PilPosZ[5] - PilPosZ[4] - Hwid) / 2., 0, 0, 1.0); + trd_H_slope1->DefineSection(1, +(PilPosZ[5] - PilPosZ[4] - Hwid) / 2., 0, 0, 1.0); + TGeoVolume* trd_H_slope_vol1 = new TGeoVolume("trd_H_z_03", trd_H_slope1, aluminiumVolMed); + trd_H_slope_vol1->SetLineColor(kGreen); + PilPosX = AperX[2]; + BarPosY = AperY[2]; + + TGeoCombiTrans* trd_H_slope_combi01 = + new TGeoCombiTrans((PilPosX + Hhei / 2.), (BarPosY + Hhei - Hwid / 2.), (PilPosZ[4] + PilPosZ[5]) / 2., rotz090); + trd_3->AddNode(trd_H_slope_vol1, 31, trd_H_slope_combi01); + TGeoCombiTrans* trd_H_slope_combi02 = + new TGeoCombiTrans(-(PilPosX + Hhei / 2.), (BarPosY + Hhei - Hwid / 2.), (PilPosZ[4] + PilPosZ[5]) / 2., rotz090); + trd_3->AddNode(trd_H_slope_vol1, 32, trd_H_slope_combi02); + TGeoCombiTrans* trd_H_slope_combi03 = + new TGeoCombiTrans((PilPosX + Hhei / 2.), -(BarPosY + Hhei - Hwid / 2.), (PilPosZ[4] + PilPosZ[5]) / 2., rotz090); + trd_3->AddNode(trd_H_slope_vol1, 33, trd_H_slope_combi03); + TGeoCombiTrans* trd_H_slope_combi04 = new TGeoCombiTrans(-(PilPosX + Hhei / 2.), -(BarPosY + Hhei - Hwid / 2.), + (PilPosZ[4] + PilPosZ[5]) / 2., rotz090); + trd_3->AddNode(trd_H_slope_vol1, 34, trd_H_slope_combi04); + } + + if (IncludeLabels) { + + Int_t text_height = 40; + Int_t text_thickness = 8; + + TGeoTranslation* tr200 = + new TGeoTranslation(0., (AperY[0] + Hhei + text_height / 2.), PilPosZ[0] - 15 + text_thickness / 2.); + TGeoTranslation* tr201 = + new TGeoTranslation(0., (AperY[1] + Hhei + text_height / 2.), PilPosZ[2] - 15 + text_thickness / 2.); + TGeoTranslation* tr202 = + new TGeoTranslation(0., (AperY[2] + Hhei + text_height / 2.), PilPosZ[4] - 15 + text_thickness / 2.); + + TGeoCombiTrans* tr203 = + new TGeoCombiTrans(-(AperX[0] + Hhei + text_thickness / 2.), (AperY[0] + Hhei - Hwid - text_height / 2.), + (PilPosZ[0] + PilPosZ[1]) / 2., roty090); + TGeoCombiTrans* tr204 = + new TGeoCombiTrans(-(AperX[1] + Hhei + text_thickness / 2.), (AperY[1] + Hhei - Hwid - text_height / 2.), + (PilPosZ[2] + PilPosZ[3]) / 2., roty090); + TGeoCombiTrans* tr205 = + new TGeoCombiTrans(-(AperX[2] + Hhei + text_thickness / 2.), (AperY[2] + Hhei - Hwid - text_height / 2.), + (PilPosZ[4] + PilPosZ[5]) / 2., roty090); + + TGeoCombiTrans* tr206 = + new TGeoCombiTrans((AperX[0] + Hhei + text_thickness / 2.), (AperY[0] + Hhei - Hwid - text_height / 2.), + (PilPosZ[0] + PilPosZ[1]) / 2., roty270); + TGeoCombiTrans* tr207 = + new TGeoCombiTrans((AperX[1] + Hhei + text_thickness / 2.), (AperY[1] + Hhei - Hwid - text_height / 2.), + (PilPosZ[2] + PilPosZ[3]) / 2., roty270); + TGeoCombiTrans* tr208 = + new TGeoCombiTrans((AperX[2] + Hhei + text_thickness / 2.), (AperY[2] + Hhei - Hwid - text_height / 2.), + (PilPosZ[4] + PilPosZ[5]) / 2., roty270); + + TGeoVolume* trdbox1 = new TGeoVolumeAssembly("trdbox1"); // volume for TRD text (108, 40, 8) + TGeoVolume* trdbox2 = new TGeoVolumeAssembly("trdbox2"); // volume for TRD text (108, 40, 8) + TGeoVolume* trdbox3 = new TGeoVolumeAssembly("trdbox3"); // volume for TRD text (108, 40, 8) + add_trd_labels(trdbox1, trdbox2, trdbox3); + + // final placement + if (ShowLayer[0]) // if geometry contains layer 1 (1st layer of station 1) + { + // trd_1->AddNode(trdbox1, 1, tr200); + trd_1->AddNode(trdbox1, 4, tr203); + trd_1->AddNode(trdbox1, 7, tr206); + } + if (ShowLayer[4]) // if geometry contains layer 5 (1st layer of station 2) + { + // trd_2->AddNode(trdbox2, 2, tr201); + trd_2->AddNode(trdbox2, 5, tr204); + trd_2->AddNode(trdbox2, 8, tr207); + } + if (ShowLayer[8]) // if geometry contains layer 9 (1st layer of station 3) + { + // trd_3->AddNode(trdbox3, 3, tr202); + trd_3->AddNode(trdbox3, 6, tr205); + trd_3->AddNode(trdbox3, 9, tr208); + } + } + + // gGeoMan->GetVolume(geoVersion)->AddNode(trdsupport,1); + + if (ShowLayer[0]) // if geometry contains layer 1 (1st layer of station 1) + gGeoMan->GetVolume(geoVersion)->AddNode(trd_1, 1); + if (ShowLayer[4]) // if geometry contains layer 5 (1st layer of station 2) + gGeoMan->GetVolume(geoVersion)->AddNode(trd_2, 2); + if (ShowLayer[8]) // if geometry contains layer 9 (1st layer of station 3) + gGeoMan->GetVolume(geoVersion)->AddNode(trd_3, 3); +} + + +void add_trd_labels(TGeoVolume* trdbox1, TGeoVolume* trdbox2, TGeoVolume* trdbox3) +{ + // write TRD (the 3 characters) in a simple geometry + TGeoMedium* textVolMed = gGeoMan->GetMedium(TextVolumeMedium); + + Int_t Tcolor = kBlue; // kRed; + Int_t Rcolor = kBlue; // kRed; // kRed; + Int_t Dcolor = kBlue; // kRed; // kYellow; + Int_t Icolor = kBlue; // kRed; + + // define transformations for letter pieces + // T + TGeoTranslation* tr01 = new TGeoTranslation(0., -4., 0.); + TGeoTranslation* tr02 = new TGeoTranslation(0., 16., 0.); + + // R + TGeoTranslation* tr11 = new TGeoTranslation(10, 0., 0.); + TGeoTranslation* tr12 = new TGeoTranslation(2, 0., 0.); + TGeoTranslation* tr13 = new TGeoTranslation(2, 16., 0.); + TGeoTranslation* tr14 = new TGeoTranslation(-2, 8., 0.); + TGeoTranslation* tr15 = new TGeoTranslation(-6, 0., 0.); + + // D + TGeoTranslation* tr21 = new TGeoTranslation(12., 0., 0.); + TGeoTranslation* tr22 = new TGeoTranslation(6., 16., 0.); + TGeoTranslation* tr23 = new TGeoTranslation(6., -16., 0.); + TGeoTranslation* tr24 = new TGeoTranslation(4., 0., 0.); + + // I + TGeoTranslation* tr31 = new TGeoTranslation(0., 0., 0.); + TGeoTranslation* tr32 = new TGeoTranslation(0., 16., 0.); + TGeoTranslation* tr33 = new TGeoTranslation(0., -16., 0.); + + // make letter T + // TGeoVolume *T = geom->MakeBox("T", Vacuum, 25., 25., 5.); + // T->SetVisibility(kFALSE); + TGeoVolume* T = new TGeoVolumeAssembly("Tbox"); // volume for T + + TGeoBBox* Tbar1b = new TGeoBBox("trd_Tbar1b", 4., 16., 4.); // | vertical + TGeoVolume* Tbar1 = new TGeoVolume("Tbar1", Tbar1b, textVolMed); + Tbar1->SetLineColor(Tcolor); + T->AddNode(Tbar1, 1, tr01); + TGeoBBox* Tbar2b = new TGeoBBox("trd_Tbar2b", 16, 4., 4.); // - top + TGeoVolume* Tbar2 = new TGeoVolume("Tbar2", Tbar2b, textVolMed); + Tbar2->SetLineColor(Tcolor); + T->AddNode(Tbar2, 1, tr02); + + // make letter R + // TGeoVolume *R = geom->MakeBox("R", Vacuum, 25., 25., 5.); + // R->SetVisibility(kFALSE); + TGeoVolume* R = new TGeoVolumeAssembly("Rbox"); // volume for R + + TGeoBBox* Rbar1b = new TGeoBBox("trd_Rbar1b", 4., 20, 4.); + TGeoVolume* Rbar1 = new TGeoVolume("Rbar1", Rbar1b, textVolMed); + Rbar1->SetLineColor(Rcolor); + R->AddNode(Rbar1, 1, tr11); + TGeoBBox* Rbar2b = new TGeoBBox("trd_Rbar2b", 4., 4., 4.); + TGeoVolume* Rbar2 = new TGeoVolume("Rbar2", Rbar2b, textVolMed); + Rbar2->SetLineColor(Rcolor); + R->AddNode(Rbar2, 1, tr12); + R->AddNode(Rbar2, 2, tr13); + TGeoTubeSeg* Rtub1b = new TGeoTubeSeg("trd_Rtub1b", 4., 12, 4., 90., 270.); + TGeoVolume* Rtub1 = new TGeoVolume("Rtub1", (TGeoShape*) Rtub1b, textVolMed); + Rtub1->SetLineColor(Rcolor); + R->AddNode(Rtub1, 1, tr14); + TGeoArb8* Rbar3b = new TGeoArb8("trd_Rbar3b", 4.); + TGeoVolume* Rbar3 = new TGeoVolume("Rbar3", Rbar3b, textVolMed); + Rbar3->SetLineColor(Rcolor); + TGeoArb8* arb = (TGeoArb8*) Rbar3->GetShape(); + arb->SetVertex(0, 12., -4.); + arb->SetVertex(1, 0., -20.); + arb->SetVertex(2, -8., -20.); + arb->SetVertex(3, 4., -4.); + arb->SetVertex(4, 12., -4.); + arb->SetVertex(5, 0., -20.); + arb->SetVertex(6, -8., -20.); + arb->SetVertex(7, 4., -4.); + R->AddNode(Rbar3, 1, tr15); + + // make letter D + // TGeoVolume *D = geom->MakeBox("D", Vacuum, 25., 25., 5.); + // D->SetVisibility(kFALSE); + TGeoVolume* D = new TGeoVolumeAssembly("Dbox"); // volume for D + + TGeoBBox* Dbar1b = new TGeoBBox("trd_Dbar1b", 4., 20, 4.); + TGeoVolume* Dbar1 = new TGeoVolume("Dbar1", Dbar1b, textVolMed); + Dbar1->SetLineColor(Dcolor); + D->AddNode(Dbar1, 1, tr21); + TGeoBBox* Dbar2b = new TGeoBBox("trd_Dbar2b", 2., 4., 4.); + TGeoVolume* Dbar2 = new TGeoVolume("Dbar2", Dbar2b, textVolMed); + Dbar2->SetLineColor(Dcolor); + D->AddNode(Dbar2, 1, tr22); + D->AddNode(Dbar2, 2, tr23); + TGeoTubeSeg* Dtub1b = new TGeoTubeSeg("trd_Dtub1b", 12, 20, 4., 90., 270.); + TGeoVolume* Dtub1 = new TGeoVolume("Dtub1", (TGeoShape*) Dtub1b, textVolMed); + Dtub1->SetLineColor(Dcolor); + D->AddNode(Dtub1, 1, tr24); + + // make letter I + TGeoVolume* I = new TGeoVolumeAssembly("Ibox"); // volume for I + + TGeoBBox* Ibar1b = new TGeoBBox("trd_Ibar1b", 4., 12., 4.); // | vertical + TGeoVolume* Ibar1 = new TGeoVolume("Ibar1", Ibar1b, textVolMed); + Ibar1->SetLineColor(Icolor); + I->AddNode(Ibar1, 1, tr31); + TGeoBBox* Ibar2b = new TGeoBBox("trd_Ibar2b", 10., 4., 4.); // - top + TGeoVolume* Ibar2 = new TGeoVolume("Ibar2", Ibar2b, textVolMed); + Ibar2->SetLineColor(Icolor); + I->AddNode(Ibar2, 1, tr32); + I->AddNode(Ibar2, 2, tr33); + + + // build text block "TRD" <32> + 8 + <28> + 8 + <32> = 108 + + // TGeoBBox *trdboxb = new TGeoBBox("", 108./2, 40./2, 8./2); + // TGeoVolume *trdbox = new TGeoVolume("trdboxb", trdboxb, textVolMed); + // trdbox->SetVisibility(kFALSE); + + // TGeoVolume* trdbox[0] = new TGeoVolumeAssembly("trdbox1"); // volume for TRD text (108, 40, 8) + // TGeoVolume* trdbox[1] = new TGeoVolumeAssembly("trdbox2"); // volume for TRD text (108, 40, 8) + // TGeoVolume* trdbox[2] = new TGeoVolumeAssembly("trdbox3"); // volume for TRD text (108, 40, 8) + + TGeoTranslation* tr100 = new TGeoTranslation(38., 0., 0.); + TGeoTranslation* tr101 = new TGeoTranslation(0., 0., 0.); + TGeoTranslation* tr102 = new TGeoTranslation(-38., 0., 0.); + + // TGeoTranslation *tr103 = new TGeoTranslation( -70., 0., 0.); // on the same line + // TGeoTranslation *tr104 = new TGeoTranslation( -86., 0., 0.); // on the same line + // TGeoTranslation *tr105 = new TGeoTranslation(-102., 0., 0.); // on the same line + + TGeoTranslation* tr110 = new TGeoTranslation(0., -50., 0.); + TGeoTranslation* tr111 = new TGeoTranslation(8., -50., 0.); + TGeoTranslation* tr112 = new TGeoTranslation(-8., -50., 0.); + TGeoTranslation* tr113 = new TGeoTranslation(16., -50., 0.); + TGeoTranslation* tr114 = new TGeoTranslation(-16., -50., 0.); + + TGeoTranslation* tr200 = new TGeoTranslation(0., 0., 0.); + TGeoTranslation* tr201 = new TGeoTranslation(0., -50., 0.); + TGeoTranslation* tr202 = new TGeoTranslation(0., -100., 0.); + + TGeoTranslation* tr210 = new TGeoTranslation(0., -150., 0.); + TGeoTranslation* tr213 = new TGeoTranslation(16., -150., 0.); + TGeoTranslation* tr214 = new TGeoTranslation(-16., -150., 0.); + + // station 1 + trdbox1->AddNode(T, 1, tr100); + trdbox1->AddNode(R, 1, tr101); + trdbox1->AddNode(D, 1, tr102); + + trdbox1->AddNode(I, 1, tr110); + + // station 2 + trdbox2->AddNode(T, 1, tr100); + trdbox2->AddNode(R, 1, tr101); + trdbox2->AddNode(D, 1, tr102); + + trdbox2->AddNode(I, 1, tr111); + trdbox2->AddNode(I, 2, tr112); + + //// station 3 + // trdbox3->AddNode(T, 1, tr100); + // trdbox3->AddNode(R, 1, tr101); + // trdbox3->AddNode(D, 1, tr102); + // + // trdbox3->AddNode(I, 1, tr110); + // trdbox3->AddNode(I, 2, tr113); + // trdbox3->AddNode(I, 3, tr114); + + // station 3 + trdbox3->AddNode(T, 1, tr200); + trdbox3->AddNode(R, 1, tr201); + trdbox3->AddNode(D, 1, tr202); + + trdbox3->AddNode(I, 1, tr210); + trdbox3->AddNode(I, 2, tr213); + trdbox3->AddNode(I, 3, tr214); + + // TGeoScale *sc100 = new TGeoScale( 36./50., 36./50., 1.); // text is vertical 50 cm, H-bar opening is 36 cm + // + // // scale text + // TGeoHMatrix *mat100 = new TGeoHMatrix(""); + // TGeoHMatrix *mat101 = new TGeoHMatrix(""); + // TGeoHMatrix *mat102 = new TGeoHMatrix(""); + // (*mat100) = (*tr100) * (*sc100); + // (*mat101) = (*tr101) * (*sc100); + // (*mat102) = (*tr102) * (*sc100); + // + // trdbox->AddNode(T, 1, mat100); + // trdbox->AddNode(R, 1, mat101); + // trdbox->AddNode(D, 1, mat102); + + // // final placement + // // TGeoTranslation *tr103 = new TGeoTranslation(0., 400., 500.); + // gGeoMan->GetVolume(geoVersion)->AddNode(trdbox, 1, new TGeoTranslation(0., 400., 500.)); + // gGeoMan->GetVolume(geoVersion)->AddNode(trdbox, 2, new TGeoTranslation(0., 500., 600.)); + // gGeoMan->GetVolume(geoVersion)->AddNode(trdbox, 3, new TGeoTranslation(0., 600., 700.)); + + // return trdbox; +} + + +void create_box_supports() +{ + const TString trd_01 = "support_trd1"; + TGeoVolume* trd_1 = new TGeoVolumeAssembly(trd_01); + + const TString trd_02 = "support_trd2"; + TGeoVolume* trd_2 = new TGeoVolumeAssembly(trd_02); + + const TString trd_03 = "support_trd3"; + TGeoVolume* trd_3 = new TGeoVolumeAssembly(trd_03); + + // const TString trdSupport = "supportframe"; + // TGeoVolume* trdsupport = new TGeoVolumeAssembly(trdSupport); + // + // trdsupport->AddNode(trd_1, 1); + // trdsupport->AddNode(trd_2, 2); + // trdsupport->AddNode(trd_3, 3); + + TGeoMedium* keepVolMed = gGeoMan->GetMedium(KeepingVolumeMedium); + TGeoMedium* aluminiumVolMed = gGeoMan->GetMedium(AluminiumVolumeMedium); // define Volume Medium + + const Int_t I_height = 40; // cm // I profile properties + const Int_t I_width = 30; // cm // I profile properties + const Int_t I_thick = 2; // cm // I profile properties + + const Double_t BeamHeight = 570; // beamline is at 5.7m above the floor + const Double_t PlatformHeight = 234; // platform is 2.34m above the floor + const Double_t PlatformOffset = 1; // distance to platform + + // Double_t AperX[3] = { 450., 550., 600.}; // 100 cm modules // inner aperture in X of support structure for stations 1,2,3 + // Double_t AperY[3] = { 350., 450., 500.}; // 100 cm modules // inner aperture in Y of support structure for stations 1,2,3 + + const Double_t AperX[3] = {4.5 * DetectorSizeX[1], 5.5 * DetectorSizeX[1], + 6 * DetectorSizeX[1]}; // inner aperture in X of support structure for stations 1,2,3 + const Double_t AperY[3] = {3.5 * DetectorSizeY[1], 4.5 * DetectorSizeY[1], + 5 * DetectorSizeY[1]}; // inner aperture in Y of support structure for stations 1,2,3 + // platform + const Double_t AperYbot[3] = {BeamHeight - (PlatformHeight + PlatformOffset + I_height), 4.5 * DetectorSizeY[1], + 5 * DetectorSizeY[1]}; // inner aperture for station1 + + const Double_t xBarPosYtop[3] = {AperY[0] + I_height / 2., AperY[1] + I_height / 2., AperY[2] + I_height / 2.}; + const Double_t xBarPosYbot[3] = {AperYbot[0] + I_height / 2., xBarPosYtop[1], xBarPosYtop[2]}; + + const Double_t zBarPosYtop[3] = {AperY[0] + I_height - I_width / 2., AperY[1] + I_height - I_width / 2., + AperY[2] + I_height - I_width / 2.}; + const Double_t zBarPosYbot[3] = {AperYbot[0] + I_height - I_width / 2., zBarPosYtop[1], zBarPosYtop[2]}; + + Double_t PilPosX; + Double_t PilPosZ[6]; // PilPosZ + + PilPosZ[0] = LayerPosition[0] + I_width / 2.; + PilPosZ[1] = LayerPosition[3] - I_width / 2. + LayerThickness; + PilPosZ[2] = LayerPosition[4] + I_width / 2.; + PilPosZ[3] = LayerPosition[7] - I_width / 2. + LayerThickness; + PilPosZ[4] = LayerPosition[8] + I_width / 2.; + PilPosZ[5] = LayerPosition[9] - I_width / 2. + LayerThickness; + + // cout << "PilPosZ[0]: " << PilPosZ[0] << endl; + // cout << "PilPosZ[1]: " << PilPosZ[1] << endl; + + TGeoRotation* rotx090 = new TGeoRotation("rotx090"); + rotx090->RotateX(90.); // rotate 90 deg around x-axis + TGeoRotation* roty090 = new TGeoRotation("roty090"); + roty090->RotateY(90.); // rotate 90 deg around y-axis + TGeoRotation* rotz090 = new TGeoRotation("rotz090"); + rotz090->RotateZ(90.); // rotate 90 deg around y-axis + TGeoRotation* roty270 = new TGeoRotation("roty270"); + roty270->RotateY(270.); // rotate 270 deg around y-axis + + TGeoRotation* rotzx01 = new TGeoRotation("rotzx01"); + rotzx01->RotateZ(90.); // rotate 90 deg around z-axis + rotzx01->RotateX(90.); // rotate 90 deg around x-axis + + TGeoRotation* rotzx02 = new TGeoRotation("rotzx02"); + rotzx02->RotateZ(270.); // rotate 270 deg around z-axis + rotzx02->RotateX(90.); // rotate 90 deg around x-axis + + Double_t ang1 = atan(3. / 4.) * 180. / acos(-1.); + // cout << "DEDE " << ang1 << endl; + // Double_t sin1 = acos(-1.); + // cout << "DEDE " << sin1 << endl; + TGeoRotation* rotx080 = new TGeoRotation("rotx080"); + rotx080->RotateX(90. - ang1); // rotate 80 deg around x-axis + TGeoRotation* rotx100 = new TGeoRotation("rotx100"); + rotx100->RotateX(90. + ang1); // rotate 100 deg around x-axis + + TGeoRotation* rotxy01 = new TGeoRotation("rotxy01"); + rotxy01->RotateX(90.); // rotate 90 deg around x-axis + rotxy01->RotateZ(-ang1); // rotate ang1 around rotated y-axis + + TGeoRotation* rotxy02 = new TGeoRotation("rotxy02"); + rotxy02->RotateX(90.); // rotate 90 deg around x-axis + rotxy02->RotateZ(ang1); // rotate ang1 around rotated y-axis + + + //------------------- + // vertical pillars (Y) + //------------------- + + // station 1 + if (ShowLayer[0]) // if geometry contains layer 1 (1st layer of station 1) + { + // TGeoBBox* trd_I_vert1_keep = new TGeoBBox("", I_thick /2., I_height /2. - I_thick, (BeamHeight + (AperY[0]+I_height) ) /2.); + TGeoBBox* trd_I_vert1_keep = new TGeoBBox("trd_I_vert1_keep", I_thick / 2., I_height / 2. - I_thick, + ((AperYbot[0] + I_height) + (AperY[0] + I_height)) / 2.); + TGeoVolume* trd_I_vert1 = new TGeoVolume("trd_I_y11", trd_I_vert1_keep, aluminiumVolMed); + // TGeoBBox* trd_I_vert2_keep = new TGeoBBox("", I_width /2., I_thick /2., (BeamHeight + (AperY[0]+I_height) ) /2.); + TGeoBBox* trd_I_vert2_keep = new TGeoBBox("trd_I_vert2_keep", I_width / 2., I_thick / 2., + ((AperYbot[0] + I_height) + (AperY[0] + I_height)) / 2.); + TGeoVolume* trd_I_vert2 = new TGeoVolume("trd_I_y12", trd_I_vert2_keep, aluminiumVolMed); + + trd_I_vert1->SetLineColor(kGreen); // kBlue); // Yellow); // kOrange); + trd_I_vert2->SetLineColor(kGreen); // kBlue); // Yellow); // kOrange); + + TGeoTranslation* ty01 = new TGeoTranslation("ty01", 0., 0., 0.); + TGeoTranslation* ty02 = new TGeoTranslation("ty02", 0., (I_height - I_thick) / 2., 0.); + TGeoTranslation* ty03 = new TGeoTranslation("ty03", 0., -(I_height - I_thick) / 2., 0.); + + // TGeoBBox* trd_I_vert_vol1_keep = new TGeoBBox("", I_width /2., I_height /2., (BeamHeight + (AperY[0]+I_height) ) /2.); + TGeoBBox* trd_I_vert_vol1_keep = new TGeoBBox("trd_I_vert_vol1_keep", I_width / 2., I_height / 2., + ((AperYbot[0] + I_height) + (AperY[0] + I_height)) / 2.); + TGeoVolume* trd_I_vert_vol1 = new TGeoVolume("trd_I_y10", trd_I_vert_vol1_keep, keepVolMed); + + // set green color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2) + trd_I_vert_vol1->SetLineColor(kGreen); + + // build I-bar trd_I_vert_vol1 + trd_I_vert_vol1->AddNode(trd_I_vert1, 1, ty01); + trd_I_vert_vol1->AddNode(trd_I_vert2, 2, ty02); + trd_I_vert_vol1->AddNode(trd_I_vert2, 3, ty03); + + // close gap to horizontal z-bars + TGeoBBox* trd_I_vert3_keep = + new TGeoBBox("trd_I_vert3_keep", (I_width - I_thick) / 2. / 2., I_height / 2. - I_thick, I_thick / 2.); + TGeoVolume* trd_I_vert3 = new TGeoVolume("trd_I_y13", trd_I_vert3_keep, aluminiumVolMed); + trd_I_vert3->SetLineColor(kGreen); + // TGeoTranslation *ty04 = new TGeoTranslation("ty04", (I_thick/2. + (I_width-I_thick)/2./2.), 0., -( (AperYbot[0]+I_height) + (AperY[0]+I_height) - I_width) /2.); // top + // TGeoTranslation *ty05 = new TGeoTranslation("ty05", (I_thick/2. + (I_width-I_thick)/2./2.), 0., ( (AperYbot[0]+I_height) + (AperY[0]+I_height) - I_width) /2.); // bottom + TGeoTranslation* ty04 = new TGeoTranslation("ty04", (I_thick / 2. + (I_width - I_thick) / 2. / 2.), 0., + -(zBarPosYbot[0] + zBarPosYtop[0]) / 2.); // top + TGeoTranslation* ty05 = new TGeoTranslation("ty05", (I_thick / 2. + (I_width - I_thick) / 2. / 2.), 0., + (zBarPosYbot[0] + zBarPosYtop[0]) / 2.); // bottom + trd_I_vert_vol1->AddNode(trd_I_vert3, 4, ty04); + trd_I_vert_vol1->AddNode(trd_I_vert3, 5, ty05); + + PilPosX = AperX[0]; + + TGeoCombiTrans* trd_I_vert_combi01 = new TGeoCombiTrans( + (PilPosX + I_height / 2.), -((AperYbot[0] + I_height) - (AperY[0] + I_height)) / 2., PilPosZ[0], rotzx01); + trd_1->AddNode(trd_I_vert_vol1, 11, trd_I_vert_combi01); + TGeoCombiTrans* trd_I_vert_combi02 = new TGeoCombiTrans( + -(PilPosX + I_height / 2.), -((AperYbot[0] + I_height) - (AperY[0] + I_height)) / 2., PilPosZ[0], rotzx01); + trd_1->AddNode(trd_I_vert_vol1, 12, trd_I_vert_combi02); + TGeoCombiTrans* trd_I_vert_combi03 = new TGeoCombiTrans( + (PilPosX + I_height / 2.), -((AperYbot[0] + I_height) - (AperY[0] + I_height)) / 2., PilPosZ[1], rotzx02); + trd_1->AddNode(trd_I_vert_vol1, 13, trd_I_vert_combi03); + TGeoCombiTrans* trd_I_vert_combi04 = new TGeoCombiTrans( + -(PilPosX + I_height / 2.), -((AperYbot[0] + I_height) - (AperY[0] + I_height)) / 2., PilPosZ[1], rotzx02); + trd_1->AddNode(trd_I_vert_vol1, 14, trd_I_vert_combi04); + } + + // station 2 + if (ShowLayer[4]) // if geometry contains layer 5 (1st layer of station 2) + { + TGeoBBox* trd_I_vert1_keep = new TGeoBBox("trd_I_vert1_keep", I_thick / 2., I_height / 2. - I_thick, + (BeamHeight + (AperY[1] + I_height)) / 2.); + TGeoVolume* trd_I_vert1 = new TGeoVolume("trd_I_y21", trd_I_vert1_keep, aluminiumVolMed); + TGeoBBox* trd_I_vert2_keep = + new TGeoBBox("trd_I_vert2_keep", I_width / 2., I_thick / 2., (BeamHeight + (AperY[1] + I_height)) / 2.); + TGeoVolume* trd_I_vert2 = new TGeoVolume("trd_I_y22", trd_I_vert2_keep, aluminiumVolMed); + + trd_I_vert1->SetLineColor(kGreen); + trd_I_vert2->SetLineColor(kGreen); + + TGeoTranslation* ty01 = new TGeoTranslation("ty01", 0., 0., 0.); + TGeoTranslation* ty02 = new TGeoTranslation("ty02", 0., (I_height - I_thick) / 2., 0.); + TGeoTranslation* ty03 = new TGeoTranslation("ty03", 0., -(I_height - I_thick) / 2., 0.); + + TGeoBBox* trd_I_vert_vol1_keep = + new TGeoBBox("trd_I_vert_vol1_keep", I_width / 2., I_height / 2., (BeamHeight + (AperY[1] + I_height)) / 2.); + TGeoVolume* trd_I_vert_vol1 = new TGeoVolume("trd_I_y20", trd_I_vert_vol1_keep, keepVolMed); + + // set green color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2) + trd_I_vert_vol1->SetLineColor(kGreen); + + // build I-bar trd_I_vert_vol1 + trd_I_vert_vol1->AddNode(trd_I_vert1, 1, ty01); + trd_I_vert_vol1->AddNode(trd_I_vert2, 2, ty02); + trd_I_vert_vol1->AddNode(trd_I_vert2, 3, ty03); + + // close gap to horizontal z-bars + TGeoBBox* trd_I_vert3_keep = + new TGeoBBox("trd_I_vert3_keep", (I_width - I_thick) / 2. / 2., I_height / 2. - I_thick, I_thick / 2.); + TGeoVolume* trd_I_vert3 = new TGeoVolume("trd_I_y23", trd_I_vert3_keep, aluminiumVolMed); + trd_I_vert3->SetLineColor(kGreen); + TGeoTranslation* ty04 = new TGeoTranslation("ty04", (I_thick / 2. + (I_width - I_thick) / 2. / 2.), 0., + -(BeamHeight + (AperY[1] + I_height) - I_width) / 2.); // top + TGeoTranslation* ty05 = new TGeoTranslation("ty05", (I_thick / 2. + (I_width - I_thick) / 2. / 2.), 0., + -(BeamHeight - (AperY[1] + I_height)) / 2. + zBarPosYbot[1]); // bottom + trd_I_vert_vol1->AddNode(trd_I_vert3, 4, ty04); + trd_I_vert_vol1->AddNode(trd_I_vert3, 5, ty05); + + PilPosX = AperX[1]; + + TGeoCombiTrans* trd_I_vert_combi01 = + new TGeoCombiTrans((PilPosX + I_height / 2.), -(BeamHeight - (AperY[1] + I_height)) / 2., PilPosZ[2], rotzx01); + trd_2->AddNode(trd_I_vert_vol1, 21, trd_I_vert_combi01); + TGeoCombiTrans* trd_I_vert_combi02 = + new TGeoCombiTrans(-(PilPosX + I_height / 2.), -(BeamHeight - (AperY[1] + I_height)) / 2., PilPosZ[2], rotzx01); + trd_2->AddNode(trd_I_vert_vol1, 22, trd_I_vert_combi02); + TGeoCombiTrans* trd_I_vert_combi03 = + new TGeoCombiTrans((PilPosX + I_height / 2.), -(BeamHeight - (AperY[1] + I_height)) / 2., PilPosZ[3], rotzx02); + trd_2->AddNode(trd_I_vert_vol1, 23, trd_I_vert_combi03); + TGeoCombiTrans* trd_I_vert_combi04 = + new TGeoCombiTrans(-(PilPosX + I_height / 2.), -(BeamHeight - (AperY[1] + I_height)) / 2., PilPosZ[3], rotzx02); + trd_2->AddNode(trd_I_vert_vol1, 24, trd_I_vert_combi04); + } + + // station 3 + if (ShowLayer[8]) // if geometry contains layer 9 (1st layer of station 3) + { + TGeoBBox* trd_I_vert1_keep = new TGeoBBox("trd_I_vert1_keep", I_thick / 2., I_height / 2. - I_thick, + (BeamHeight + (AperY[2] + I_height)) / 2.); + TGeoVolume* trd_I_vert1 = new TGeoVolume("trd_I_y31", trd_I_vert1_keep, aluminiumVolMed); + TGeoBBox* trd_I_vert2_keep = + new TGeoBBox("trd_I_vert2_keep", I_width / 2., I_thick / 2., (BeamHeight + (AperY[2] + I_height)) / 2.); + TGeoVolume* trd_I_vert2 = new TGeoVolume("trd_I_y32", trd_I_vert2_keep, aluminiumVolMed); + + trd_I_vert1->SetLineColor(kGreen); + trd_I_vert2->SetLineColor(kGreen); + + TGeoTranslation* ty01 = new TGeoTranslation("ty01", 0., 0., 0.); + TGeoTranslation* ty02 = new TGeoTranslation("ty02", 0., (I_height - I_thick) / 2., 0.); + TGeoTranslation* ty03 = new TGeoTranslation("ty03", 0., -(I_height - I_thick) / 2., 0.); + + TGeoBBox* trd_I_vert_vol1_keep = + new TGeoBBox("trd_I_vert_vol1_keep", I_width / 2., I_height / 2., (BeamHeight + (AperY[2] + I_height)) / 2.); + TGeoVolume* trd_I_vert_vol1 = new TGeoVolume("trd_I_y30", trd_I_vert_vol1_keep, keepVolMed); + + // set green color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2) + trd_I_vert_vol1->SetLineColor(kGreen); + + // build I-bar trd_I_vert_vol1 + trd_I_vert_vol1->AddNode(trd_I_vert1, 1, ty01); + trd_I_vert_vol1->AddNode(trd_I_vert2, 2, ty02); + trd_I_vert_vol1->AddNode(trd_I_vert2, 3, ty03); + + // close gap to horizontal z-bars + TGeoBBox* trd_I_vert3_keep = + new TGeoBBox("trd_I_vert3_keep", (I_width - I_thick) / 2. / 2., I_height / 2. - I_thick, I_thick / 2.); + TGeoVolume* trd_I_vert3 = new TGeoVolume("trd_I_y33", trd_I_vert3_keep, aluminiumVolMed); + trd_I_vert3->SetLineColor(kGreen); + TGeoTranslation* ty04 = new TGeoTranslation("ty04", (I_thick / 2. + (I_width - I_thick) / 2. / 2.), 0., + -(BeamHeight + (AperY[2] + I_height) - I_width) / 2.); // top + TGeoTranslation* ty05 = new TGeoTranslation("ty05", (I_thick / 2. + (I_width - I_thick) / 2. / 2.), 0., + -(BeamHeight - (AperY[2] + I_height)) / 2. + zBarPosYbot[2]); // bottom + trd_I_vert_vol1->AddNode(trd_I_vert3, 4, ty04); + trd_I_vert_vol1->AddNode(trd_I_vert3, 5, ty05); + + PilPosX = AperX[2]; + + TGeoCombiTrans* trd_I_vert_combi01 = + new TGeoCombiTrans((PilPosX + I_height / 2.), -(BeamHeight - (AperY[2] + I_height)) / 2., PilPosZ[4], rotzx01); + trd_3->AddNode(trd_I_vert_vol1, 31, trd_I_vert_combi01); + TGeoCombiTrans* trd_I_vert_combi02 = + new TGeoCombiTrans(-(PilPosX + I_height / 2.), -(BeamHeight - (AperY[2] + I_height)) / 2., PilPosZ[4], rotzx01); + trd_3->AddNode(trd_I_vert_vol1, 32, trd_I_vert_combi02); + TGeoCombiTrans* trd_I_vert_combi03 = + new TGeoCombiTrans((PilPosX + I_height / 2.), -(BeamHeight - (AperY[2] + I_height)) / 2., PilPosZ[5], rotzx02); + trd_3->AddNode(trd_I_vert_vol1, 33, trd_I_vert_combi03); + TGeoCombiTrans* trd_I_vert_combi04 = + new TGeoCombiTrans(-(PilPosX + I_height / 2.), -(BeamHeight - (AperY[2] + I_height)) / 2., PilPosZ[5], rotzx02); + trd_3->AddNode(trd_I_vert_vol1, 34, trd_I_vert_combi04); + } + + + //------------------- + // horizontal supports (X) + //------------------- + + // station 1 + if (ShowLayer[0]) // if geometry contains layer 1 (1st layer of station 1) + { + TGeoBBox* trd_I_hori1_keep = new TGeoBBox("trd_I_hori1_keep", I_thick / 2., I_height / 2. - I_thick, AperX[0]); + TGeoVolume* trd_I_hori1 = new TGeoVolume("trd_I_x11", trd_I_hori1_keep, aluminiumVolMed); + TGeoBBox* trd_I_hori2_keep = new TGeoBBox("trd_I_hori2_keep", I_width / 2., I_thick / 2., AperX[0]); + TGeoVolume* trd_I_hori2 = new TGeoVolume("trd_I_x12", trd_I_hori2_keep, aluminiumVolMed); + + trd_I_hori1->SetLineColor(kRed); // Yellow); + trd_I_hori2->SetLineColor(kRed); // Yellow); + + TGeoTranslation* tx01 = new TGeoTranslation("tx01", 0., 0., 0.); + TGeoTranslation* tx02 = new TGeoTranslation("tx02", 0., (I_height - I_thick) / 2., 0.); + TGeoTranslation* tx03 = new TGeoTranslation("tx03", 0., -(I_height - I_thick) / 2., 0.); + + TGeoBBox* trd_I_hori_vol1_keep = new TGeoBBox("trd_I_hori_vol1_keep", I_width / 2., I_height / 2., AperX[0]); + TGeoVolume* trd_I_hori_vol1 = new TGeoVolume("trd_I_x10", trd_I_hori_vol1_keep, keepVolMed); + + // set red color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2) + trd_I_hori_vol1->SetLineColor(kRed); + + // build I-bar trd_I_hori_vol1 + trd_I_hori_vol1->AddNode(trd_I_hori1, 1, tx01); + trd_I_hori_vol1->AddNode(trd_I_hori2, 2, tx02); + trd_I_hori_vol1->AddNode(trd_I_hori2, 3, tx03); + + TGeoCombiTrans* trd_I_hori_combi01 = new TGeoCombiTrans(0., xBarPosYtop[0], PilPosZ[0], roty090); + trd_1->AddNode(trd_I_hori_vol1, 11, trd_I_hori_combi01); + TGeoCombiTrans* trd_I_hori_combi02 = new TGeoCombiTrans(0., -xBarPosYbot[0], PilPosZ[0], roty090); + trd_1->AddNode(trd_I_hori_vol1, 12, trd_I_hori_combi02); + TGeoCombiTrans* trd_I_hori_combi03 = new TGeoCombiTrans(0., xBarPosYtop[0], PilPosZ[1], roty090); + trd_1->AddNode(trd_I_hori_vol1, 13, trd_I_hori_combi03); + TGeoCombiTrans* trd_I_hori_combi04 = new TGeoCombiTrans(0., -xBarPosYbot[0], PilPosZ[1], roty090); + trd_1->AddNode(trd_I_hori_vol1, 14, trd_I_hori_combi04); + } + + // station 2 + if (ShowLayer[4]) // if geometry contains layer 5 (1st layer of station 2) + { + TGeoBBox* trd_I_hori1_keep = new TGeoBBox("trd_I_hori1_keep", I_thick / 2., I_height / 2. - I_thick, AperX[1]); + TGeoVolume* trd_I_hori1 = new TGeoVolume("trd_I_x21", trd_I_hori1_keep, aluminiumVolMed); + TGeoBBox* trd_I_hori2_keep = new TGeoBBox("trd_I_hori2_keep", I_width / 2., I_thick / 2., AperX[1]); + TGeoVolume* trd_I_hori2 = new TGeoVolume("trd_I_x22", trd_I_hori2_keep, aluminiumVolMed); + + trd_I_hori1->SetLineColor(kRed); + trd_I_hori2->SetLineColor(kRed); + + TGeoTranslation* tx01 = new TGeoTranslation("tx01", 0., 0., 0.); + TGeoTranslation* tx02 = new TGeoTranslation("tx02", 0., (I_height - I_thick) / 2., 0.); + TGeoTranslation* tx03 = new TGeoTranslation("tx03", 0., -(I_height - I_thick) / 2., 0.); + + TGeoBBox* trd_I_hori_vol1_keep = new TGeoBBox("trd_I_hori_vol1_keep", I_width / 2., I_height / 2., AperX[1]); + TGeoVolume* trd_I_hori_vol1 = new TGeoVolume("trd_I_x20", trd_I_hori_vol1_keep, keepVolMed); + + // set red color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2) + trd_I_hori_vol1->SetLineColor(kRed); + + // build I-bar trd_I_hori_vol1 + trd_I_hori_vol1->AddNode(trd_I_hori1, 1, tx01); + trd_I_hori_vol1->AddNode(trd_I_hori2, 2, tx02); + trd_I_hori_vol1->AddNode(trd_I_hori2, 3, tx03); + + TGeoCombiTrans* trd_I_hori_combi01 = new TGeoCombiTrans(0., xBarPosYtop[1], PilPosZ[2], roty090); + trd_2->AddNode(trd_I_hori_vol1, 21, trd_I_hori_combi01); + TGeoCombiTrans* trd_I_hori_combi02 = new TGeoCombiTrans(0., -xBarPosYbot[1], PilPosZ[2], roty090); + trd_2->AddNode(trd_I_hori_vol1, 22, trd_I_hori_combi02); + TGeoCombiTrans* trd_I_hori_combi03 = new TGeoCombiTrans(0., xBarPosYtop[1], PilPosZ[3], roty090); + trd_2->AddNode(trd_I_hori_vol1, 23, trd_I_hori_combi03); + TGeoCombiTrans* trd_I_hori_combi04 = new TGeoCombiTrans(0., -xBarPosYbot[1], PilPosZ[3], roty090); + trd_2->AddNode(trd_I_hori_vol1, 24, trd_I_hori_combi04); + } + + // station 3 + if (ShowLayer[8]) // if geometry contains layer 9 (1st layer of station 3) + { + TGeoBBox* trd_I_hori1_keep = new TGeoBBox("trd_I_hori1_keep", I_thick / 2., I_height / 2. - I_thick, AperX[2]); + TGeoVolume* trd_I_hori1 = new TGeoVolume("trd_I_x31", trd_I_hori1_keep, aluminiumVolMed); + TGeoBBox* trd_I_hori2_keep = new TGeoBBox("trd_I_hori2_keep", I_width / 2., I_thick / 2., AperX[2]); + TGeoVolume* trd_I_hori2 = new TGeoVolume("trd_I_x32", trd_I_hori2_keep, aluminiumVolMed); + + trd_I_hori1->SetLineColor(kRed); + trd_I_hori2->SetLineColor(kRed); + + TGeoTranslation* tx01 = new TGeoTranslation("tx01", 0., 0., 0.); + TGeoTranslation* tx02 = new TGeoTranslation("tx02", 0., (I_height - I_thick) / 2., 0.); + TGeoTranslation* tx03 = new TGeoTranslation("tx03", 0., -(I_height - I_thick) / 2., 0.); + + TGeoBBox* trd_I_hori_vol1_keep = new TGeoBBox("trd_I_hori_vol1_keep", I_width / 2., I_height / 2., AperX[2]); + TGeoVolume* trd_I_hori_vol1 = new TGeoVolume("trd_I_x30", trd_I_hori_vol1_keep, keepVolMed); + + // set red color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2) + trd_I_hori_vol1->SetLineColor(kRed); + + // build I-bar trd_I_hori_vol1 + trd_I_hori_vol1->AddNode(trd_I_hori1, 1, tx01); + trd_I_hori_vol1->AddNode(trd_I_hori2, 2, tx02); + trd_I_hori_vol1->AddNode(trd_I_hori2, 3, tx03); + + TGeoCombiTrans* trd_I_hori_combi01 = new TGeoCombiTrans(0., xBarPosYtop[2], PilPosZ[4], roty090); + trd_3->AddNode(trd_I_hori_vol1, 31, trd_I_hori_combi01); + TGeoCombiTrans* trd_I_hori_combi02 = new TGeoCombiTrans(0., -xBarPosYbot[2], PilPosZ[4], roty090); + trd_3->AddNode(trd_I_hori_vol1, 32, trd_I_hori_combi02); + TGeoCombiTrans* trd_I_hori_combi03 = new TGeoCombiTrans(0., xBarPosYtop[2], PilPosZ[5], roty090); + trd_3->AddNode(trd_I_hori_vol1, 33, trd_I_hori_combi03); + TGeoCombiTrans* trd_I_hori_combi04 = new TGeoCombiTrans(0., -xBarPosYbot[2], PilPosZ[5], roty090); + trd_3->AddNode(trd_I_hori_vol1, 34, trd_I_hori_combi04); + } + + + //------------------- + // horizontal supports (Z) + //------------------- + + // station 1 + if (ShowLayer[0]) // if geometry contains layer 1 (1st layer of station 1) + { + TGeoBBox* trd_I_slope1_keep = new TGeoBBox("trd_I_slope1_keep", I_thick / 2., I_height / 2. - I_thick, + (PilPosZ[1] - PilPosZ[0] - I_width) / 2.); + TGeoVolume* trd_I_slope1 = new TGeoVolume("trd_I_z11", trd_I_slope1_keep, aluminiumVolMed); + TGeoBBox* trd_I_slope2_keep = + new TGeoBBox("trd_I_slope2_keep", I_width / 2., I_thick / 2., (PilPosZ[1] - PilPosZ[0] - I_width) / 2.); + TGeoVolume* trd_I_slope2 = new TGeoVolume("trd_I_z12", trd_I_slope2_keep, aluminiumVolMed); + + trd_I_slope1->SetLineColor(kYellow); + trd_I_slope2->SetLineColor(kYellow); + + TGeoTranslation* tz01 = new TGeoTranslation("tz01", 0., 0., 0.); + TGeoTranslation* tz02 = new TGeoTranslation("tz02", 0., (I_height - I_thick) / 2., 0.); + TGeoTranslation* tz03 = new TGeoTranslation("tz03", 0., -(I_height - I_thick) / 2., 0.); + + TGeoBBox* trd_I_slope_vol1_keep = + new TGeoBBox("trd_I_slope_vol1_keep", I_width / 2., I_height / 2., (PilPosZ[1] - PilPosZ[0] - I_width) / 2.); + TGeoVolume* trd_I_slope_vol1 = new TGeoVolume("trd_I_z10", trd_I_slope_vol1_keep, keepVolMed); + + // set yellow color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2) + trd_I_slope_vol1->SetLineColor(kYellow); + + // build I-bar trd_I_slope_vol1 + trd_I_slope_vol1->AddNode(trd_I_slope1, 1, tz01); + trd_I_slope_vol1->AddNode(trd_I_slope2, 2, tz02); + trd_I_slope_vol1->AddNode(trd_I_slope2, 3, tz03); + + PilPosX = AperX[0]; + + TGeoCombiTrans* trd_I_slope_combi01 = + new TGeoCombiTrans((PilPosX + I_height / 2.), zBarPosYtop[0], (PilPosZ[0] + PilPosZ[1]) / 2., rotz090); + trd_1->AddNode(trd_I_slope_vol1, 11, trd_I_slope_combi01); + TGeoCombiTrans* trd_I_slope_combi02 = + new TGeoCombiTrans(-(PilPosX + I_height / 2.), zBarPosYtop[0], (PilPosZ[0] + PilPosZ[1]) / 2., rotz090); + trd_1->AddNode(trd_I_slope_vol1, 12, trd_I_slope_combi02); + TGeoCombiTrans* trd_I_slope_combi03 = + new TGeoCombiTrans((PilPosX + I_height / 2.), -zBarPosYbot[0], (PilPosZ[0] + PilPosZ[1]) / 2., rotz090); + trd_1->AddNode(trd_I_slope_vol1, 13, trd_I_slope_combi03); + TGeoCombiTrans* trd_I_slope_combi04 = + new TGeoCombiTrans(-(PilPosX + I_height / 2.), -zBarPosYbot[0], (PilPosZ[0] + PilPosZ[1]) / 2., rotz090); + trd_1->AddNode(trd_I_slope_vol1, 14, trd_I_slope_combi04); + } + + // station 2 + if (ShowLayer[4]) // if geometry contains layer 5 (1st layer of station 2) + { + TGeoBBox* trd_I_slope1_keep = new TGeoBBox("trd_I_slope1_keep", I_thick / 2., I_height / 2. - I_thick, + (PilPosZ[3] - PilPosZ[2] - I_width) / 2.); + TGeoVolume* trd_I_slope1 = new TGeoVolume("trd_I_z21", trd_I_slope1_keep, aluminiumVolMed); + TGeoBBox* trd_I_slope2_keep = + new TGeoBBox("trd_I_slope2_keep", I_width / 2., I_thick / 2., (PilPosZ[3] - PilPosZ[2] - I_width) / 2.); + TGeoVolume* trd_I_slope2 = new TGeoVolume("trd_I_z22", trd_I_slope2_keep, aluminiumVolMed); + + trd_I_slope1->SetLineColor(kYellow); + trd_I_slope2->SetLineColor(kYellow); + + TGeoTranslation* tz01 = new TGeoTranslation("tz01", 0., 0., 0.); + TGeoTranslation* tz02 = new TGeoTranslation("tz02", 0., (I_height - I_thick) / 2., 0.); + TGeoTranslation* tz03 = new TGeoTranslation("tz03", 0., -(I_height - I_thick) / 2., 0.); + + TGeoBBox* trd_I_slope_vol1_keep = + new TGeoBBox("trd_I_slope_vol1_keep", I_width / 2., I_height / 2., (PilPosZ[3] - PilPosZ[2] - I_width) / 2.); + TGeoVolume* trd_I_slope_vol1 = new TGeoVolume("trd_I_z20", trd_I_slope_vol1_keep, keepVolMed); + + // set yellow color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2) + trd_I_slope_vol1->SetLineColor(kYellow); + + // build I-bar trd_I_slope_vol1 + trd_I_slope_vol1->AddNode(trd_I_slope1, 1, tz01); + trd_I_slope_vol1->AddNode(trd_I_slope2, 2, tz02); + trd_I_slope_vol1->AddNode(trd_I_slope2, 3, tz03); + + PilPosX = AperX[1]; + + TGeoCombiTrans* trd_I_slope_combi01 = + new TGeoCombiTrans((PilPosX + I_height / 2.), zBarPosYtop[1], (PilPosZ[2] + PilPosZ[3]) / 2., rotz090); + trd_2->AddNode(trd_I_slope_vol1, 21, trd_I_slope_combi01); + TGeoCombiTrans* trd_I_slope_combi02 = + new TGeoCombiTrans(-(PilPosX + I_height / 2.), zBarPosYtop[1], (PilPosZ[2] + PilPosZ[3]) / 2., rotz090); + trd_2->AddNode(trd_I_slope_vol1, 22, trd_I_slope_combi02); + TGeoCombiTrans* trd_I_slope_combi03 = + new TGeoCombiTrans((PilPosX + I_height / 2.), -zBarPosYbot[1], (PilPosZ[2] + PilPosZ[3]) / 2., rotz090); + trd_2->AddNode(trd_I_slope_vol1, 23, trd_I_slope_combi03); + TGeoCombiTrans* trd_I_slope_combi04 = + new TGeoCombiTrans(-(PilPosX + I_height / 2.), -zBarPosYbot[1], (PilPosZ[2] + PilPosZ[3]) / 2., rotz090); + trd_2->AddNode(trd_I_slope_vol1, 24, trd_I_slope_combi04); + } + + // station 3 + if (ShowLayer[8]) // if geometry contains layer 9 (1st layer of station 3) + { + TGeoBBox* trd_I_slope1_keep = new TGeoBBox("trd_I_slope1_keep", I_thick / 2., I_height / 2. - I_thick, + (PilPosZ[5] - PilPosZ[4] - I_width) / 2.); + TGeoVolume* trd_I_slope1 = new TGeoVolume("trd_I_z31", trd_I_slope1_keep, aluminiumVolMed); + TGeoBBox* trd_I_slope2_keep = + new TGeoBBox("trd_I_slope2_keep", I_width / 2., I_thick / 2., (PilPosZ[5] - PilPosZ[4] - I_width) / 2.); + TGeoVolume* trd_I_slope2 = new TGeoVolume("trd_I_z32", trd_I_slope2_keep, aluminiumVolMed); + + trd_I_slope1->SetLineColor(kYellow); + trd_I_slope2->SetLineColor(kYellow); + + TGeoTranslation* tz01 = new TGeoTranslation("tz01", 0., 0., 0.); + TGeoTranslation* tz02 = new TGeoTranslation("tz02", 0., (I_height - I_thick) / 2., 0.); + TGeoTranslation* tz03 = new TGeoTranslation("tz03", 0., -(I_height - I_thick) / 2., 0.); + + TGeoBBox* trd_I_slope_vol1_keep = + new TGeoBBox("trd_I_slope_vol1_keep", I_width / 2., I_height / 2., (PilPosZ[5] - PilPosZ[4] - I_width) / 2.); + TGeoVolume* trd_I_slope_vol1 = new TGeoVolume("trd_I_z30", trd_I_slope_vol1_keep, keepVolMed); + + // set yellow color for keeping volume of I profile, seen with gGeoManager->SetVisLevel(2) + trd_I_slope_vol1->SetLineColor(kYellow); + + // build I-bar trd_I_slope_vol1 + trd_I_slope_vol1->AddNode(trd_I_slope1, 1, tz01); + trd_I_slope_vol1->AddNode(trd_I_slope2, 2, tz02); + trd_I_slope_vol1->AddNode(trd_I_slope2, 3, tz03); + + PilPosX = AperX[2]; + + TGeoCombiTrans* trd_I_slope_combi01 = + new TGeoCombiTrans((PilPosX + I_height / 2.), zBarPosYtop[2], (PilPosZ[4] + PilPosZ[5]) / 2., rotz090); + trd_3->AddNode(trd_I_slope_vol1, 31, trd_I_slope_combi01); + TGeoCombiTrans* trd_I_slope_combi02 = + new TGeoCombiTrans(-(PilPosX + I_height / 2.), zBarPosYtop[2], (PilPosZ[4] + PilPosZ[5]) / 2., rotz090); + trd_3->AddNode(trd_I_slope_vol1, 32, trd_I_slope_combi02); + TGeoCombiTrans* trd_I_slope_combi03 = + new TGeoCombiTrans((PilPosX + I_height / 2.), -zBarPosYbot[2], (PilPosZ[4] + PilPosZ[5]) / 2., rotz090); + trd_3->AddNode(trd_I_slope_vol1, 33, trd_I_slope_combi03); + TGeoCombiTrans* trd_I_slope_combi04 = + new TGeoCombiTrans(-(PilPosX + I_height / 2.), -zBarPosYbot[2], (PilPosZ[4] + PilPosZ[5]) / 2., rotz090); + trd_3->AddNode(trd_I_slope_vol1, 34, trd_I_slope_combi04); + } + + if (IncludeLabels) { + + Int_t text_height = 40; + Int_t text_thickness = 8; + + TGeoTranslation* tr200 = new TGeoTranslation(0., (AperY[0] + I_height + text_height / 2.), + PilPosZ[0] - I_width / 2. + text_thickness / 2.); + TGeoTranslation* tr201 = new TGeoTranslation(0., (AperY[1] + I_height + text_height / 2.), + PilPosZ[2] - I_width / 2. + text_thickness / 2.); + TGeoTranslation* tr202 = new TGeoTranslation(0., (AperY[2] + I_height + text_height / 2.), + PilPosZ[4] - I_width / 2. + text_thickness / 2.); + + TGeoCombiTrans* tr203 = + new TGeoCombiTrans(-(AperX[0] + I_height + text_thickness / 2.), + (AperY[0] + I_height - I_width - text_height / 2.), (PilPosZ[0] + PilPosZ[1]) / 2., roty090); + TGeoCombiTrans* tr204 = + new TGeoCombiTrans(-(AperX[1] + I_height + text_thickness / 2.), + (AperY[1] + I_height - I_width - text_height / 2.), (PilPosZ[2] + PilPosZ[3]) / 2., roty090); + TGeoCombiTrans* tr205 = + new TGeoCombiTrans(-(AperX[2] + I_height + text_thickness / 2.), + (AperY[2] + I_height - I_width - text_height / 2.), (PilPosZ[4] + PilPosZ[5]) / 2., roty090); + + TGeoCombiTrans* tr206 = + new TGeoCombiTrans((AperX[0] + I_height + text_thickness / 2.), + (AperY[0] + I_height - I_width - text_height / 2.), (PilPosZ[0] + PilPosZ[1]) / 2., roty270); + TGeoCombiTrans* tr207 = + new TGeoCombiTrans((AperX[1] + I_height + text_thickness / 2.), + (AperY[1] + I_height - I_width - text_height / 2.), (PilPosZ[2] + PilPosZ[3]) / 2., roty270); + TGeoCombiTrans* tr208 = + new TGeoCombiTrans((AperX[2] + I_height + text_thickness / 2.), + (AperY[2] + I_height - I_width - text_height / 2.), (PilPosZ[4] + PilPosZ[5]) / 2., roty270); + + TGeoVolume* trdbox1 = new TGeoVolumeAssembly("trdbox1"); // volume for TRD text (108, 40, 8) + TGeoVolume* trdbox2 = new TGeoVolumeAssembly("trdbox2"); // volume for TRD text (108, 40, 8) + TGeoVolume* trdbox3 = new TGeoVolumeAssembly("trdbox3"); // volume for TRD text (108, 40, 8) + add_trd_labels(trdbox1, trdbox2, trdbox3); + + // final placement + if (ShowLayer[0]) // if geometry contains layer 1 (1st layer of station 1) + { + // trd_1->AddNode(trdbox1, 1, tr200); + trd_1->AddNode(trdbox1, 4, tr203); + trd_1->AddNode(trdbox1, 7, tr206); + } + if (ShowLayer[4]) // if geometry contains layer 5 (1st layer of station 2) + { + // trd_2->AddNode(trdbox2, 2, tr201); + trd_2->AddNode(trdbox2, 5, tr204); + trd_2->AddNode(trdbox2, 8, tr207); + } + if (ShowLayer[8]) // if geometry contains layer 9 (1st layer of station 3) + { + // trd_3->AddNode(trdbox3, 3, tr202); + trd_3->AddNode(trdbox3, 6, tr205); + trd_3->AddNode(trdbox3, 9, tr208); + } + } + + if (ShowLayer[0]) // if geometry contains layer 1 (1st layer of station 1) + gGeoMan->GetVolume(geoVersion)->AddNode(trd_1, 1); + if (ShowLayer[4]) // if geometry contains layer 5 (1st layer of station 2) + gGeoMan->GetVolume(geoVersion)->AddNode(trd_2, 2); + if (ShowLayer[8]) // if geometry contains layer 9 (1st layer of station 3) + gGeoMan->GetVolume(geoVersion)->AddNode(trd_3, 3); +} diff --git a/macro/mcbm/mcbm_transport.C b/macro/mcbm/mcbm_transport.C index 54af7ab206..202cf10ff9 100644 --- a/macro/mcbm/mcbm_transport.C +++ b/macro/mcbm/mcbm_transport.C @@ -18,7 +18,11 @@ void SetTrack(CbmTransport*, Double_t, Int_t, Double_t, Double_t, Double_t); -void mcbm_transport(Int_t nEvents = 10, const char* setupName = "mcbm_beam_2020_03", +void mcbm_transport(Int_t nEvents = 10, + // const char* setupName = "mcbm_beam_2021_07", + // const char* setupName = "mcbm_beam_2021_04", + // const char* setupName = "mcbm_beam_2021_03", + const char* setupName = "mcbm_beam_2020_03", // const char* setupName = "mcbm_beam_2019_11", // const char* setupName = "mcbm_beam_2019_03", // const char* setupName = "sis18_mcbm_25deg_long", -- GitLab